

Scientific Achievement

We investigated the diffusivity of water in aqueous solutions of chaotropic and kosmotropic ions confined in 3 nm MCM41 pores using elastic and quasielastic neutron scattering. There is a significant reduction of the average diffusion coefficient of water in aqueous salts solutions in confinement compared to that in the bulk solutions. Remarkably, the KCl solutions experience a cumulative impact of the confinement and the presence of K⁺ ions, resulting in a 2-fold *increase* in the water diffusivity compared to pure water, or water with Na⁺, in the same confinement.

Significance and Impact

A large increase in the water diffusivity, evident in the modelgenerated from the the peak maxima to the I_KCI, indicative of a 2in confinement upon biological membranes.

Research Details

Quasielastic neutron scattering (QENS) at BASIS and elastic neutron scattering (ENS) at HFBS were used to elucidate the dynamics of confined salt solutions.

Figure 1. Dynamic susceptibility data generated from the corresponding QENS signal shows a shift of the peak maxima to the higher energy transfer in the MCM41_0.5M_KCl, indicative of a 2-fold increase in the diffusivity of water in confinement upon biological membranes. addition of KCl.

Work at SNS used BL-2 (BASIS)

N. C. Osti, B. P. Thapaliya, S. Dai, M. Tyagi and E. Mamontov, Journal of Physical Chemistry Letters, 12, 4038-4044 (**2021**). "Strong Enhancement of Nanoconfined Water Mobility by a Structure Breaking Salt".

