Superconducting Linac (SCL) Systems

Presented at the Accelerator Advisory Committee Review

Sang-ho Kim
SCL Systems Group
Research Accelerator Division

May 7-9, 2013
Scope of Work (I)

Transfer lines in the tunnel (during installation)

Cryomodules in the tunnel

Empty slots for upgrade

2 K Cold Box

4 K Cold Box

GHe storage

Warm Compressor

LHe dewar

LN2

Test cave

Control room

CM rework

R&D

CTF

CM development

HPR

VTA
Scope of Work (II)

• Operation and maintenance of SCL Systems
 – Cryomodules: 11 medium beta, 12 high beta
 – Central Helium Liquefier (CHL): 2.8 kW at 2K
 – CHL control room: 1.5 shifts/day to cover CHL operation
 – Transfer lines: about 550 linear meters

• Cryomodule development and cryomodule rework/repair
 – Medium beta spare cryomodule: design under progress, ready for long-lead item procurements
 – Repair/rework in the RFTF: 0-2 cryomodules/year

• R&D for SCL system performance improvement and for STS
 – In-situ cleaning process, SRF cavity, fundamental power coupler, etc.

• SRF facilities
 – Existing: Clean room, high pressure rinse/ultra pure water system, test cave, RF system for test cave, ultrasonic cleaning, cavity tuning bench, cryomodule assembly/repair area
 – Under development: Vertical test area, Horizontal test apparatus, Cryogenic test facility, Barrel polishing system, R&D vacuum furnace
 – Future plans: Chemistry system, full size vacuum furnace
Group organization

• FY13 Budget (Labor: $3.09M, material: $1.96M)
 - Materials: spares 0.44, recurring ops 0.34, cryogens 0.43, CM repairs 0.48, others (contractor, facility improv./cleaning, M&S, travel, etc) 0.27

<table>
<thead>
<tr>
<th>Position Type</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>2</td>
</tr>
<tr>
<td>Engineer</td>
<td>3</td>
</tr>
<tr>
<td>Physicist</td>
<td>1</td>
</tr>
<tr>
<td>Technician</td>
<td>6</td>
</tr>
<tr>
<td>Research mechanic</td>
<td>1</td>
</tr>
<tr>
<td>Post-doc</td>
<td>(1)</td>
</tr>
</tbody>
</table>

• Weekly planning for resource management
Spare/maintenance

• Spares
 – In-line spares (ex. Warm compressor)
 – Ready to install for emergency (ex. Spare cryomodule, dummy pipes, warm section)
 – Critical spares are identified and maintained
 – Other spares are managed by system expert

• Maintenance planning
 – Preventative maintenance for CHL automatically triggered by SNS maintenance management system
 – Shut down planning starts 2 months in advance
 – Maintenance & operation coordinator position
 – Follow the SNS standard for work control
 – Predictive/proactive maintenance
Issues and Vulnerability

- Issues (performance degradation over the long term)
 - CHL: contamination \Rightarrow efficiency/capacity down
 - Could result in long shut down: non-gaseous contamination in 4 K heat exchanger
 - Full time monitoring of impurities of helium (O2, N2, water, Oil)
 - SCL: SRF cavity performance degradation by gas/particulate contaminants (ex. Errant beam)
 - Processing, thermal cycle, repairs
 - Strict procedures/instructions followed and careful operation as a whole
 - Communication/consulting between subject matter expert and operation group at abnormal condition or precursors
 - Adjustment of machine proactively

- Key vulnerabilities (single point failure)
 - Carbon bed failure: 6 months
 - 2K cold compressor failure: 6-12 months
 - Transfer line failure: 6-18 months
 - Gas management failure: 3 months
 - Oil contamination in 4K cold box: 4 weeks- 3 months
 - Cryomodule: 3 weeks
Critical Spares

- SCL
 - Spare high beta cryomodule
 - Spare valves and actuators
 - Spare mechanical tuners
 - Four spare couplers for each beta
 - Part kit at least for one CM rework
 - Spare dummy pipes
 - Spare warm section (under procurement)
 - Spare medium beta cryomodule (under design)
 - Spare local pumping cart
Critical Spares

- **CHL**

 - **Warm compressors:**
 - in-line spare compressors in 1st and 2nd stages
 - One spare for each 1st and 2nd stage motor in storage
 - Two or three oil pumps/motors for each 1st and 2nd stage in storage
 - At least three shaft seals in storage

 - **4K cold box**
 - One spare turbine for each stage (5 stage)

 - **2K cold box**
 - One spare cold compressor/motor for each stage (4 stage)
 - Two spare VDFs for each stage
 - Spare card for mag bearing cabinets at least one each

- **Gas management**
 - Full set of valves