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Liquids Reflectometer, BL-4B at SNS, ORNL

Robotic sample changer, retired Jan 2023;
Replaced with automated sample changers.
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LR probes surface and interfacial structures of thin films on length scales of 0.5 nm to 350 nm.

« Change in thickness, scattering length density and roughness
« Air/solid, liquid/solid, air/liquid
« Operates at 60 Hz (3.4 A) and 30 Hz (6.8 A), tentatively 20 Hz
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Multi-environment UHV chamber

Gas absorption studies

e Base pressures < 10° Torr

e Temperature control from RT to 600 °C
e Load lock system from sample loading
* Precision gas doping

e Can be upgraded to incorporate UV-Vis or
IR spectroscopy
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Research Artide

www.acsami.org
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& Cite This: ACS Appl. Mater. interfaces 2018, 10, 3267832687

Nanoscale Resolution of Electric-field Induced Motion in lonic

Diblock Copolymer Thin Films

Jason W. Dugger,T'# Wei Li,T'# Mingtao Chen(i Timothy E. Lon%i Rebecca J. L. Welboum,§
Rajeev Kumar,*"*® and Bradley §. Lokitz*"

High-field chamber

Maximilian WA. Skoda,® James F. Bmwm'ng,*’I
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Solvated and Deformed Hairy Metal-Organic Polyhedron

[ ] [ ] o
Lang m u I r FI I m Stu d I es Mu Li, Mingxin Zhang, Yuyan Lai, Yuan Liu, Candice Halbert, James F. Browning,* Dong Liu,*

and Panchao Yin*

Cite This: J. Phys. Chem. C 2020, 124, 15656—15662 Read Online
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Probe COVID-19 virus infection dynamics
in real time in 2020

Critical questions:
 Materials Science
» Polymer Science
« Biomembrane Science

< To protect the host:

= What factors affect the insertion of fusion peptide (FP) into the
host membrane?

« Membrane compositions, e.g., charge density, mechanical
properties

» Effective concentration of FP

= Can we impede membrane fusion?

» Block the insertion of FP
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Humidity can (humidity chamber)

Humidity study:

= Humidity can
— Fixed single point relative humidity study

— 3D printed sample holder can
accommodate both reflect-up and reflect-
down measurement

e Humidity chamber

— Precise and controlled humidity for top
and bottom separately

Humidity can
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Liquid cell

e Solid-liquid interface

« Mainly use Si substrates (2-inch diameter x 5 mm
thickness)

« Automatic control for up to 4 cells (liquid exchange via
HPLC pump)
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Electrochemical Cell

Www.acsami.org Research Article

The Study of the Binder Poly(acrylic acid) and Its Role in
Concomitant Solid—Electrolyte Interphase Formation on Si Anodes

Katie L. Browning,® Robert L. Sacci, Mathieu Doucet, James F. Browning, Joshua R. Kim,
and Gabriel M. Veith*

Cite This: ACS Appl. Mater. Interfaces 2020, 12, 10018-10030 I:I Read Online
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Science case 2: Understanding ion selectivity with redox-polymers

Fundamental understanding of contributing mechanisms, and control of interactions to achieve ion-

selectivity.
An important platform by tailoring advanced redox-polymer for targeting heavy metal recovery and

remediation.
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Development of redox-selective materials
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Experiment preparation

/ Reference electrode ’ ‘® swelling ________
y [ee® N

Electrolyte
Filling port -L ________ Salt, polymer, void
Counter electrode m m
Gasket +0.1V vs +0.6 V vs

Polymer Ag/AgCl Ag/AgCl
Pd on Si substrate

Q

. : i neutron path

\J

Sample on a 2-inch
diameter Si wafer

Schematic diagram of the EC cell and NR geometry

NR: To probe the spatial distribution, ion

migration and film swelling as a function of J(f
Working electrode: redox-active polymer applied potentials on polymer thin film. " S
Counter electrode: TiZr - [
Reference electrode: Ag/AgCl o :
Electrolyte: Target ions in H,0 or D,0 or mix Salt: Cr, Mo, Re, V, etc. BV poly(iny) ferrocene =
Of HZO and DZO PFPMAm: 3-ferrocenylpropyl acrylamide

Pendant group polymer
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Experiment plan Ore T —

e Measure ion selectivity and hydrationby == === == === - - - -
comparing combinations of polymer, target Open Circuit I e
ion, and solvent (H,0/D,0).

* Apply a series of potential for each system.
+01 V VS Ag/AgCI equilibrium measurement

* Because of the way we wanted to measure, no

automated control between EC and NR e measurement
possible... very labor intensive. +0.6V
) equilibrium measurement
dynamic measurement
(~30 min)
|
+0.1V
equilibrium measurement
Suggested time-resolved dynamic messurement
measurements. This was done during +0.6V
the relaxation period between each equilibrium measurement
applied potential...
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NR and SLD profiles (a very small part of data...)
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NR and SLD profile monovalent behavior for PFPMAm.
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New type of measurements: time-resolved reflectometry

[t complements our standard measurements.

 Time scale available at 4B is well matched to EC
processes.

« Our standard measurement is made of multiple
runs, e.g., 7 runs at 60 Hz, or 3 runs at 30 Hz.

e Operating at 30 Hz and judiciously picking 8 and
A band, could measure a range of 0.017 < Q <
0.05 1/A.

« [nitial and final states measured for complete Q
range (~45 minutes).

e Data sliced in T-minute intervals.

*OAK RIDGE | shs5amon

National Laboratory | SOURCE

R(q)

1024

1020 4

1016

1012

108

104 -

107 4

1074 4

Measured changes over time

Final state

w— initial
—— 0s
—— 60s
—— 120s
—— 180s
—— 2405
—— 3005
—— 3605
—— 4205
480 s
—— 5405
—— 600 s
—— 660 s
—— TJ205s
—— 7805
—— 840s
—— 900s
—— 9805
—— 1020 s
1080 s

Initial state .
—— 1140 s
| —— 1200s
—— 1260 s
—— 1320s
—— 1380s
—— 1440 s
= final

1072 1071
q [1/4]

R. Candeago, et al. JACS Au 2024, 4, 3, 919-929




Need for new analysis approach: Bayesian fitting loop

That's a lot of data to fit: 2,600 time-resolved reflectivity curves...

We developed a way to use the initial state as prior information and perform
iterative fits, with each fit result becomes the prior for the next.
We can see the

PFPMAM with ReO,, in D,0 capture/release of
target ions as the
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Capabilities at Macro group CNMS

Autonomous Continuous Flow Reactor Synthesis for Atom Precision with
Scalability (AutoFlowS)

Vapourtec

Snapdragon « Small scale

synthesis

Large Scale synthesis
« Organic synthesis
Multiple reactors in one flow
* Deuteration
Can connect to a large amount of
instrumentation

Various analytical techniques

Phoenix by ThalesNano 53@?2 —
 High pressure, high temperature gglc\;/l/HpLC

« Two compartments for temperature control ESPE

« Gas module !
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3D printing lab
Fused deposition modeling (FDM)

Ultimaker 2 Ultimaker 3 Gigabot Hyrel 3D
Ultimaker : h ‘“I“' ‘ '_U_
\
{ Ze t [
e | L } !
Single print nozzle double print nozzle

2 print heads. Big size print. Up to 5 print heads

Suitable materials: Filament. Constant diameter during extrusion. Common materials: ABS, PLA, PC

Stereolithography (SLA)

Visible light source

Formlab 3B Formlab 3 Photocentric

Form-cure

Post curing of SLA printed object
UV light chamber,
Heated chamber (up to 70 C)
Selected time

Sujtable material: Photo-polymerization at a fast rate. Good flowability.
%OAK RIDGE

Nationsl Liboratary Typical example: Acrylate based materials



Direct Ink Writing (DIW)

Syringe head: Heated “syringe”
Hyrel 3D DIW printing Upto200C

Suitable materials:

Common materials:
* Fluids with thixotropic rheology

Metal, ceramic, thermoset, thermoplastic, solution, emulsion, hydrogel...

Selective Laser Sintering Injection molding machine

Sinterit Lisa

Model 150A injection machine APX-PIM injection machine

Suitable material:
Powder based material

Common materials:
Nylon 12




User Facilities

Center for Nanophase Materials Sciences

About Our Team ¥ AboutCNMS v Research ¥ Research Sections and Groups ¥ User Information ¥ Media and Events ~

The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL)
offers the national and international user community access to staff expertise and state-of-the-art
equipment for a broad range of nanoscience research, including nanomaterials synthesis,
nanofabrication, imaging/microscopy/characterization, and theory/modeling/simulation.

Quick Resource Links

Spallation Neutron Source (SNS) and
Center for Nanophase Materials

Sciences (CNMS)
at Oak Ridge National Laboratory
. - (ORNL)
Staff Expertise Capabilities and Research Impact Become a CNMS User
Instruments

Welcome to submit user proposals to CNMS!  ttes://www.omlgov/Tacility/cnms

https://neutrons.ornl.gov/
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https://www.ornl.gov/facility/cnms
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