Neutron X-ray Summer School, July 18, 2022

Synchrotron Radiation User Facilities

(JAREEBEBBB

I II JABA

Jonathan Lang Director X-ray Science Division Advanced Photon Source Argonne National Laboratory

UChicago Argonne, LLC

SYNCHROTRON FACILITIES AROUND THE WORLD **Over 35 major synchrotron facilities world-wide**

Over 40,000 scientists use these facilities each year.

Five are large-circumference high-energy (>5 GeV) high-brilliance (<3nm-rad) storage rings UChicago Argonne, LLC Argonne 🕰

SYNCHROTRON LIGHT SOURCES IN NORTH AMERICA 8 light sources; 5 DOE US; 1 NSF US; 1 State US; 1 Canadian

LIGHT SOURCE PARAMETERS

Source	Energy	Current	Circum.	Emittance	# Beamlines
APS	7.0 GeV	100 mA	1104m	3.0 nm-rad	67 (41 ID)
APS-U	6.0 GeV	200 mA	1104m- δ	0.042 nm-rad	~same
NSLS-II	3.0 GeV	400 mA	792m	0.75 nm-rad	28 (22 ID)
SSRL	3.0 GeV	500 mA	234m	10 nm-rad	27 (18 ID)
ALS	1.9 GeV	500 mA	199m	2.0 nm-rad	46 (17 ID)
CHESS	6.0 GeV	200 mA	768m	27 nm-rad	7
CLS	2.9 GeV	250 mA	170m	18.1 nm-rad	20 (13 ID)
CAMD	1.3 GeV	200 mA	55m	200 nm-rad	15 (3 ID)

LCLS – X-ray free electron laser accelerator, so parameter don't easily correlate

DOE SCIENTIFIC USER FACILITIES More than 11,000 unique users use one of the DOE light sources each year; Canadian Light Source ~1000; CHESS ~1000

Argonne 스

WHY CHOOSE PARTICULAR FACILITY? **Considerations for your experiment**

- Energy range for x-rays
 - Higher energy storage rings generate "harder" x-rays
 - Penetration, complex environments, in-situ/operando, ...
 - Lower energy rings light elements, electronic and magnetic sensitivity, ...
- Brightness
 - Enables smaller focal spots & coherence measurements
- Timing structure
 - Pulse structure suitable if doing ultra-fast experiments
 - Pump-probe; high-speed imaging
- Specialized capabilities
 - Unique measurements (i.e. beam polarization, magnetic field, stress/strain equipment, furnaces, laser heating, gas handling, ...
 - Ancillary labs capabilities (i.e. electrochemistry, high pressure, ...)
- Location
 - Similar capabilities for some techniques (i.e. XAS, SAXS, ...)
 - Easier to transport your own equipment.

DOE LIGHT SOURCE FACILITIES

Light sources optimized* for particular energy ranges

- Harder x-rays contain significant power in the x-ray beam
- Lower energy ring can go to higher current without heat load mitigation

LIGHT SOURCE FACILITIES **Spectral range**

Hard X-ray (>20 keV)

In-operando XRD

Dynamic Tomography

HighE Diff. Micro.

PDF, HEDM, XRD, High Press., Tomography,

EXAFS absorbing aton ٠ scattering a

RIXS (3d K, 5d L) SAXS, XAS, Diffraction, XRF, Spectro-microscopy,

Soft X-ray (<3 keV)

Angle Resolved Photoemission

X-ray magnetic dichroism

ARPES, XMCD, Imaging, Light elements, ...

Argonne 合

Facilities will offer range of capabilities even outside their "sweet" spot. UChicago Argonne, LLC

EVOLUTION OF SYNCHROTRON BRIGHTNESS

≥ 2 orders of magnitude increase in brightness between generations

9

DOE SCIENTIFIC USER FACILITIES

Brightness & Beam Coherence

Focusing of x-ray beam

Forward Scatting Ptychography

Image: state of the state of

Simulation courtesy of Z. Jiang (APS)

X-ray Photon Correlation Spectroscopy

Static Average

Fast particle dynamics

Brightness enables focusing of all x-rays into nanometer scale focal spots Enables lensless imaging & studies of dynamics using correlation methods See talks by Chris Jacobsen, Ross Harder tomorrow & Larry Lurio on Wednesday

UChicago Argonne, LLC

LIGHT SOURCE FACILITIES Timing modes

APS operates majority of the time (~80%) in a fill pattern that enables pump-probe (and other) timing studies

E. Kinigstein et al., Rev. Sci. Instrum. 92, 085109 (2021)

Single pulse x-ray diffraction @ APS 35-ID

See talks by Linda Young, & Paul Fouss on Wednesday

LIGHT SOURCE FACILITIES

Beamline capabilities

Nanoprobe @ APS

MEC instrument @ LCLS

AMPIX electrochemical cells @ APS

COSMIC imaging @ ALS

RAMS instrument @ APS

Ancillary capabilities at each beamline typically given on web pages

Soft X-ray RIXS @ NSLS-II

LIGHT SOURCE FACILITIES Beamline capabilities information

Beamlines Directory										
Information on APS Operations and General User Programs During the COVID Pandemic. To determine what access modes are available to general users at this time, check the operational status of the APS - Read More										
Beamline	Disciplines	Techniques	Energy Range	Access	Operator	Status				
1-BM-B,C	Materials Science Physics	 Optics testing Detector testing Topography White Laue Single Crystal Diffraction 	 6-30 keV 50-120 keV 	On-site	XSD	θ				
1-ID-B,C,E	Materials Science Physics Chemistry Life Sciences	High-energy x-ray diffraction Tomography Small-angle x-ray scattering Fluorescence spectroscopy Pair distribution function Phase contrast imaging	 41-136 keV 45-116 keV 	On-site	XSD	Θ				
2-BM-A,B	PhysicsLife SciencesGeoScienceMaterials Science	 Tomography Phase contrast imaging 	 10-170 keV 11-35 keV 	On-site	XSD	θ				
2-ID-D	Life Sciences Materials Science Environmental Science	 Microfluorescence Micro x-ray absorption fine structure Nano-imaging Ptychography 	• 5-30 keV	 On-site Remote Mail-in Beamline Staff 	XSD	θ				
2-ID-E	Life Sciences	 Microfluorescence 	 5-20 keV 	On-site	XSD	Θ				

- Types of measurements supported at beamlines typically given on web pages
- <u>Contact local beamlines staff with questions</u>

APS UPGRADE PROJECT

- New storage ring, 42 pm emittance
 @ 6 GeV, 200 mA
- New and updated insertion devices, including Superconducting Unds.
- Combined result in brightness increases of up to 500x
- 9 new feature beamlines + Long Beamline Building
- 15 enhanced and improved beamlines
- Exploit high performance computing, AI/ML

44 Petaflops

~2 Exaflop (2000 Petaflops)

Coming Fall 22'

On-line Fall 21'

- \$815M upgrade; Reuses ~\$1.5B in infrastructure
- Split ~½ accelerator & ~½ beamlines

UChicago Argonne, LLC

14

APS-U – HIGH BRIGHTNESS STORAGE RING LATTICE

Completely replace the storage ring to dramatically decrease electron source size

 $\varepsilon_{o} = 42 \text{ pm}$

UChicago Argonne, LLC

World-Wide Light Source Upgrades

MAX-IV (Sweden) Inauguration June 2016; in operation

UChicago Argonne, LLC ENERGY

HEXM: High Energy X-ray Microscopy (20-ID)

Long beamline for 3D materials characterization of engineering materials

APSU BEAMLINE CONSTRUCTION SCHEDULE

Schedule driven by experimental enclosure delivery

- Downtime starts April 17, 2023
 - 273 days left
- Downtime duration 1 year
 - 1 month to remove current ring
 - 8 months to install new ring
 - 3 months to "commission" new ring
- Resume operations in ~May 2024
 - First ~month, each beamline needs to be re-enabled (shielding checked, etc.).
 - Start operations at 25-50 mA & ramp up to 200 mA within a year.

Schedule for major beamline work.

Argonne

APS-U: THE ULTIMATE 3D MICROSCOPE

High Energy

Penetrating bulk materials and operating systems

- World's brightest source of hard x-rays
- 3D mapping deep inside samples
- X-ray cinematography in previously inaccessible regimes

Brightness

Providing macroscopic fields of view with nm-scale resolution

- Multi-scale imaging connecting nanometer features across macroscopic dimensions
- Fast sampling with chemical, magnetic, electronic sensitivity

Coherence

Enabling highest spatial resolution even in non-periodic materials

- Extends lens-less imaging to hard x-ray domain, with resolution down to <1 nm, localizing atoms
- Increases phase contrast for fast fullfield imaging
- Correlation methods improve by 10,000x-1,000,000x

SUMMARY Lots of considerations when choosing a beamline/facility Can be daunting task.

- Energy range for measurement?
- Brightness needs?
- Timing structure important?
- Specialized sample/measurement capabilities needed?
- Location
 - Remote or Mail-in capabilities offered?

Staff at the facilities there to help you make the most effective use of your time. Talk to them, they can help guide you towards the best choice beamlines

