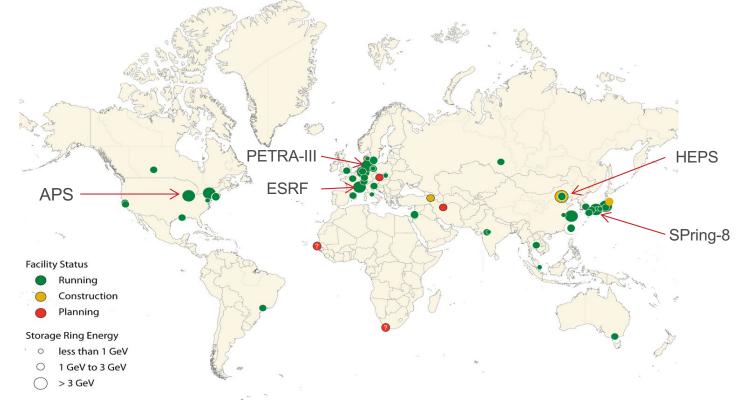
Neutron X-ray Summer School, August 16, 2023

Synchrotron Radiation User Facilities

alas Jala


Jonathan Lang Director X-ray Science Division Advanced Photon Source Argonne National Laboratory

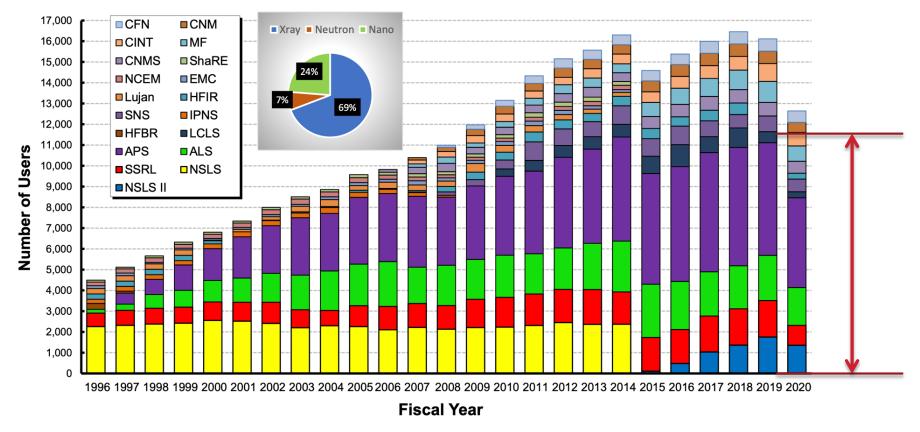
UChicago Argonne, LLC

SYNCHROTRON FACILITIES AROUND THE WORLD **Over 40 synchrotron light-source facilities world-wide**

Approximately 50,000 scientists use one of these facilities each year.

Five are large-circumference high-energy (>5 GeV) high-brilliance (<3nm-rad) storage rings UChicago Argonne, LLC Argonne 🕰 **ENERGY**

SYNCHROTRON LIGHT SOURCES IN NORTH AMERICA 8 light sources; 5 DOE US; 1 NSF US; 1 State US; 1 Canadian

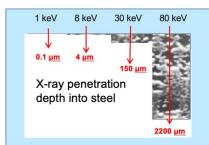


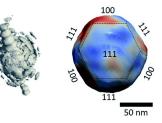
LIGHT SOURCE PARAMETERS

Source	Energy	Current	Circum.	Emittance	# Beamlines
APS	7.0 GeV	100 mA	1104m	3.0 nm-rad	67 (47 ID)
APS-U	6.0 GeV	200 mA	1104m- δ	0.042 nm-rad	70 (54 ID)
NSLS-II	3.0 GeV	400 mA	792m	0.75 nm-rad	30 (22 ID)
SSRL	3.0 GeV	500 mA	234m	10 nm-rad	27 (18 ID)
ALS	1.9 GeV	500 mA	199m	2.0 nm-rad	46 (17 ID)
CHESS	6.0 GeV	200 mA	768m	27 nm-rad	8 (8 ID)
CLS	2.9 GeV	250 mA	170m	18.1 nm-rad	20 (13 ID)
CAMD	1.3 GeV	200 mA	55m	200 nm-rad	15 (3 ID)

Most important: Energy, emittance, & does it have a beamline for what I want to do *LCLS – X-ray free electron laser accelerator, so parameter don't easily correlate

DOE SCIENTIFIC USER FACILITIES More than 11,000 unique users use one of the DOE light sources each year; Canadian Light Source ~1000; CHESS ~1000 users

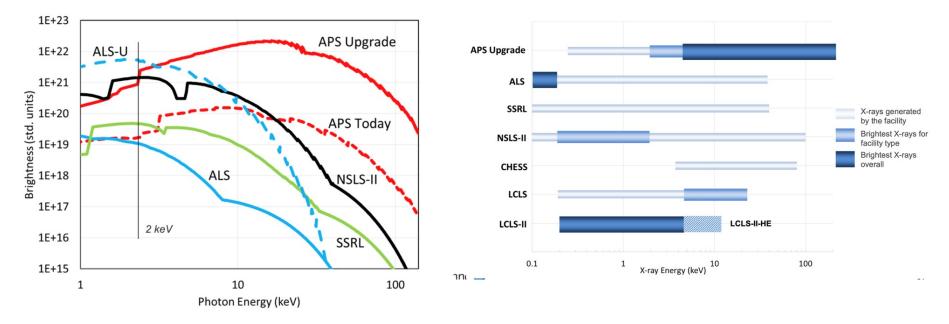



Argonne 스

WHY CHOOSE PARTICULAR FACILITY? **Considerations for your experiment**

- Energy range of x-rays
 - Higher energy storage rings generate "harder" x-rays
 - Penetration, complex environments, in-situ/operando, ...
 - Lower energy rings light elements, electronic and magnetic sensitivity, ...
- Brightness
 - Enables smaller focal spots & coherence measurements
- Timing structure
 - Pulse structure suitable if doing ultra-fast experiments
 - Pump-probe; high-speed imaging
- Specialized capabilities
 - Unique measurements (e.g. beam polarization, magnetic field, stress/strain equipment, furnaces, laser heating, gas handling, ...
 - Ancillary labs capabilities (e.g. electrochemistry, high pressure, ...)
- Location
 - Similar capabilities for some techniques (e.g. XAS, SAXS, ...)
 - Easier to transport your own equipment.

UChicago Argonne, LLC

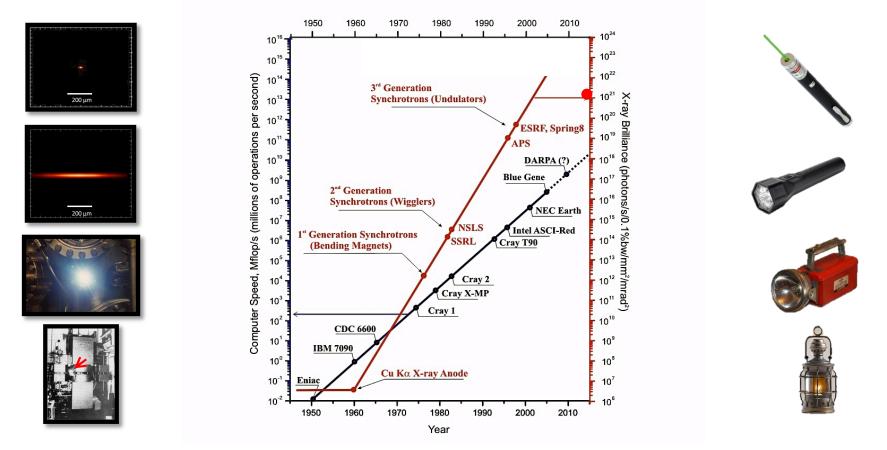


ENERGY

DOE LIGHT SOURCE FACILITIES

Light sources optimized* for particular energy ranges

- Harder x-rays contain significant power in the x-ray beam
- Lower energy ring can go to higher current without heat load mitigation


LIGHT SOURCE FACILITIES Spectral range

Hard X-ray (>20 keV) X-rays (5-20 keV) Soft X-ray (<3 keV) EXAFS absorbing aton scattering a 200 7400 Energy (eV) 24 26 2θ (°), λ = 0.7295 Å **GI-SAXS** HighE Diff. Micro. XAS In-operando XRD Angle Resolved Photoemission Pancreatic 6 cell $S_{xx} + S_{yy} + S_{zz}$ 4 3 2 1 0 K (r.l.u.) -0.5 0 0.5 H (r.l.u.) 708 709 710 711 energy (eV) **Dynamic Tomography** High-Press. XRD RIXS (3d K, 5d L) Surface Diffraction XMCD Imaging PDF, HEDM, XRD, High Press., SAXS, XAS, Diffraction, XRF, ARPES, XMCD, Imaging, Light Tomography, Spectro-microscopy, elements, ...

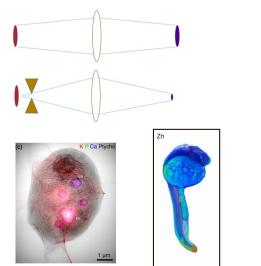
Facilities will offer range of capabilities even outside their "sweet" spot.

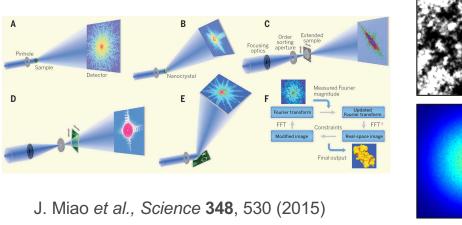
Argonne 🛆

EVOLUTION OF SYNCHROTRON BRIGHTNESS

≥ 2 orders of magnitude increase in brightness between generations

DOE SCIENTIFIC USER FACILITIES


Brightness & Beam Coherence


Focusing of x-ray beam

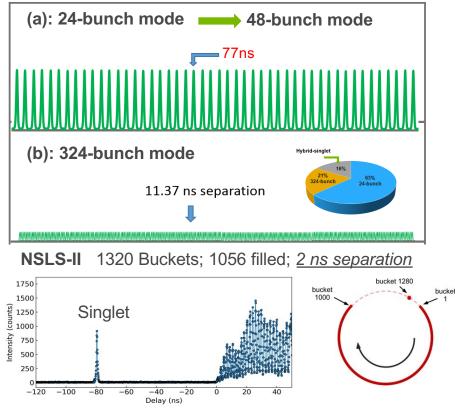
Coherent (lensless) imaging

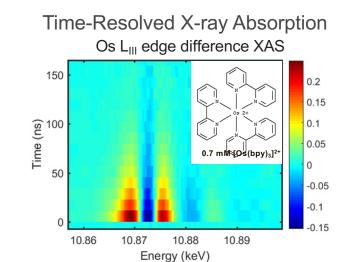
X-ray Photon Correlation Spectroscopy

Static Average

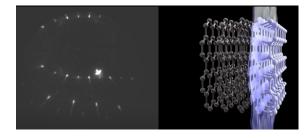
Fast particle dynamics

Simulation courtesy of Z. Jiang (APS)


Brightness enables focusing of all x-rays into nanometer scale focal spots Enables lensless imaging & studies of dynamics using correlation methods See talks by Chris Jacobsen, Stefan Hruszkewycz (Tuesday) & Larry Lurio (today)


UChicago Argonne, LLC

LIGHT SOURCE FACILITIES **Timing modes**


APS operates majority of the time (~80%) in a fill pattern that enables pump-probe (and other) timing studies

E. Kinigstein et al., Rev. Sci. Instrum. 92, 085109 (2021)

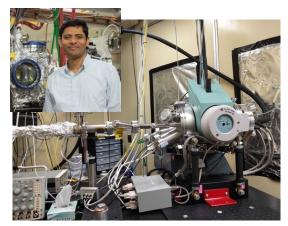
Single pulse x-ray diffraction @ APS 35-ID

ENERGY Argonne, LLC

See talks by Ann Marie March (today) & Paul Fouss (Monday)

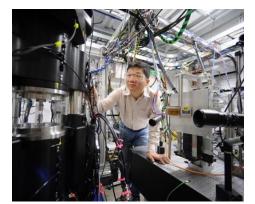
UChicago

LIGHT SOURCE FACILITIES


Beamline capabilities

Nanoprobe @ APS

Soft X-ray RIXS @ NSLS-II



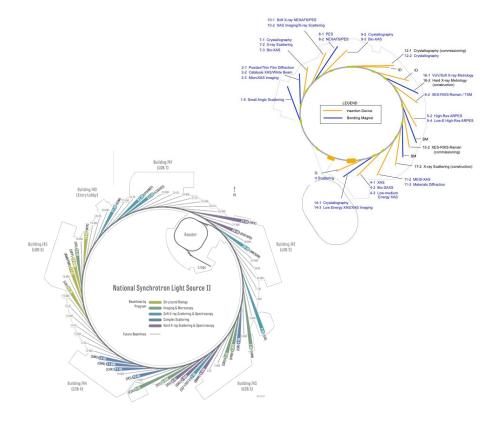
COSMIC imaging @ ALS

MEC instrument @ LCLS

AMPIX electrochemical cells @ APS

RAMS instrument @ APS

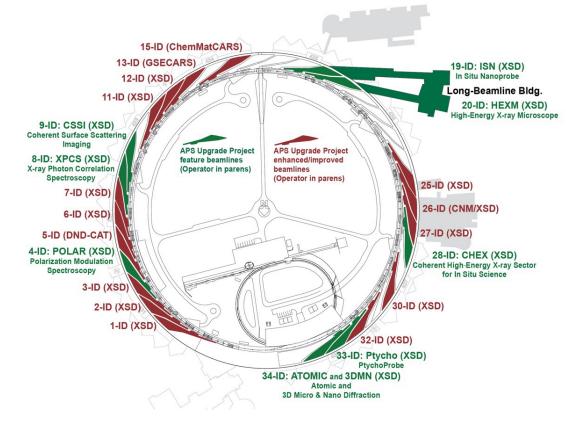
Ancillary capabilities at each beamline typically given on web pages



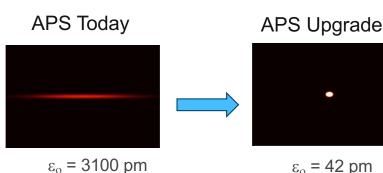
UChicago Argonne, LLC

LIGHT SOURCE FACILITIES Beamline capabilities information

Beamlines Directory Information on APS Operations and General User Programs During the COVID Pandemic. To determine what access modes are available to general users at this time, check the operational status of the APS - Read More										
1-BM-B,C	Materials Science Physics	 Optics testing Detector testing Topography White Laue Single Crystal Diffraction 	 6-30 keV 50-120 keV 	On-site	XSD	θ				
1-ID-B,C,E	Materials Science Physics Chemistry Life Sciences	High-energy x-ray diffraction Tomography Small-angle x-ray scattering Fluorescence spectroscopy Pair distribution function Phase contrast imaging	• 41-136 keV • 45-116 keV	On-site	XSD	Θ				
2-BM-A,B	 Physics Life Sciences GeoScience Materials Science 	 Tomography Phase contrast imaging 	 10-170 keV 11-35 keV 	On-site	XSD	Θ				
2-ID-D	Life Sciences Materials Science Environmental Science	 Microfluorescence Micro x-ray absorption fine structure Nano-imaging Ptychography 	• 5-30 keV	 On-site Remote Mail-in Beamline Staff 	XSD	θ				
2-ID-E	Life Sciences	 Microfluorescence 	 5-20 keV 	On-site	XSD	Θ				



- Types of measurements supported at beamlines typically given on web pages
- Contact local beamlines staff with questions


Argonne 🛆

APS UPGRADE PROJECT

- \$815M upgrade; Reuses ~\$1.5B in infrastructure
- Split ~½ accelerator & ~½ beamlines

UChicago ENERGY Argonne, LLC

- $\varepsilon_0 = 42 \text{ pm}$
- New storage ring and new updated insertion devices yields brightness increases of up to 500x
- Project includes 9 new feature & 15 enhanced beamlines to optimally exploit this brightness increase
- Exploit high performance computing, AI/ML for data analysis

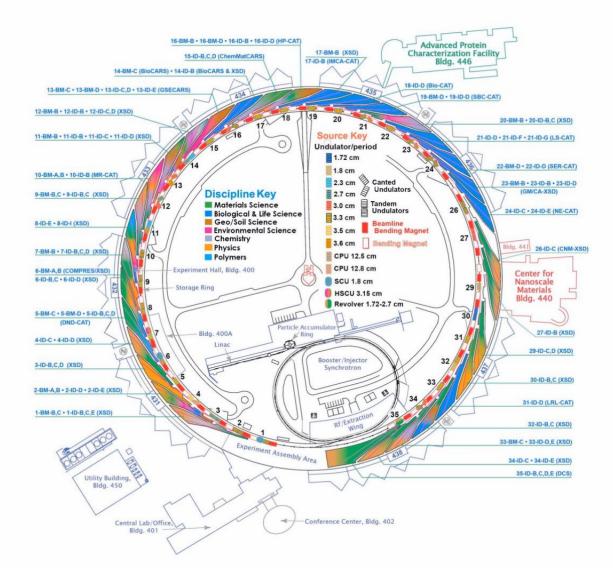
44 Petaflops

~2 Exaflop (2000 Petaflops)

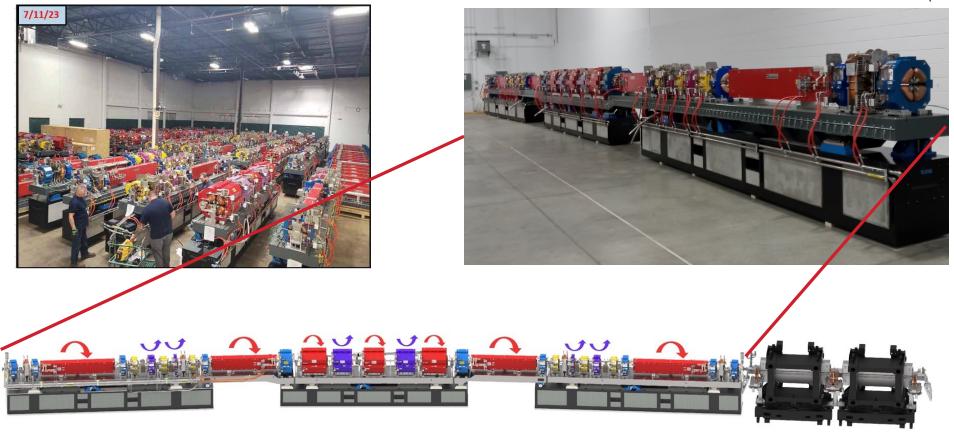
Argonne 🕰

Coming Fall 23'

On-line 22'


APS-U DARK TIME SCHEDULE

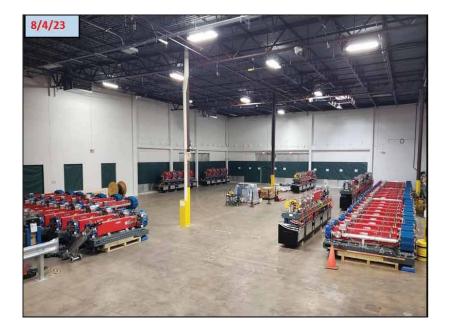
Initial light from APS-U expected onto experimental hall floor in May '24 (~9 months from now)



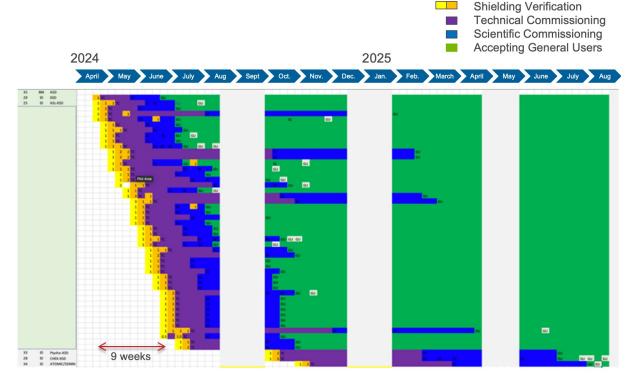
Argonne 스

APS-U SECTOR IN OFFSITE WAREHOUSE

Sector Mockup


Argonne 스

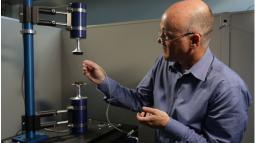
OFFSITE WAREHOUSE Emptying out fast



UChicago Argonne, LLC Argonne 🛆

APSU BEAMLINE STARTUP NOTIONAL TIMELINE

Time increments in weeks


- Resume operations in ~May 2024
 - All stations need shielding verification performed before can start x-ray work. Will take ~9 weeks to go through all 54 ports (canted beamlines same time)
 - Technical commissioning: Check if all systems are working properly with x-rays (~1 month for beamlines with no/modest upgrades; ~ 3 months for new beamlines)
 - Scientific commissioning: First demo experiments (pre-scheduled)

Expect nearly all beamlines to be accepting general users by Oct. '24

SUMMARY Lots of considerations when choosing a beamline/facility Can be daunting task.

- Energy range for measurement?
- Brightness needs?
- Timing structure important?
- Specialized sample/measurement capabilities needed?
- Location
 - Remote or Mail-in capabilities offered?

Staff at the facilities there to help you make the most effective use of your time. Talk to them, they can help guide you towards the best choice beamlines

