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Outline

1. Scattering geometry basics: Plane waves
and Fourier transforms

3. Scattering from ensemble of atoms
and diffraction




Scattering geometry basics

Plane waves and
Fourier transforms




Scattering geometry basics: The sinusoidal wave

A = amplitude
0 = angle
¢ = phase difference

cos 0 =sin(0 +n/2)

Y = Asin(0 + @)




Scattering geometry basics: The wavenumber k

Y = Asin(0 + @) Y

k = wavenumber
X = position
A = wavelength

k= —
A

k has SI units of rad m1

Y = Asin(kx + ¢)




Scattering geometry basics: The travelling wave

Wave moves in x-direction with time, t

Y = Asin(kx + @)

o = initial phase angle
¢ = phase after time t

w = angular frequency X
w = 2TV
® =g —wt

Y = Asin(kx — wt + ¢)




Scattering geometry basics: The plane wave

We define a plane wave:
Amplitude in the z-direction,
Propagates in y- and x-directions.

—

r = direction of propagation

—

k = wavevector

1/)=Asin(l:t>-F—a)t+qb0)




Scattering geometry basics: The traveling plane wave

Plane wave in x-direction only Plane wave in xy-direction

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State



Scattering geometry basics: Complex numbers

e Useful to work with exponential Jm  Argand diagram
over sinusoidal waves

* Complex numbers allow us to
simplify wavefunction
equations

i = imaginary number

el® = cos@ +isind

¢=Asin(E-F—wt+q§0)

l/) — Aei(?-?—wt)




Scattering geometry basics: The Fourier series

* We approximate a periodic structure through a sum of cosines and sines.
* Let f(x) be a function expanded by a Fourier series

f(x) = ay + a4 cos(kx) + a, cos(2kx) + a3 cos(3kx) + - Goes to
L b cinlla) 1 h cind DI 1 b cind Dl 1 zero if
| Ul Olll\lb/bj | U2 Olll\bl\z/\;} | U3 Olll\d'\z/\;} 1 f(X) :f(_X)

n =1, fundamental harmonic n =3, higher harmonics included




The Fourier coefficients

* We write sum more efficiently if we pick the coefficients correctly.
* Now a definition and not approximation.

00

* We extend the analysis to a non-

_ ink . .
fx) = Z Cpe™ periodic function
n=-—oo
* The Fourier coefficients become
where ¢_. =c;, continuous functions we call F(k)

1
c, = —F(k)Ak
n m()

A
c =lff(x)e‘i"kxdx
"2
0



The Fourier transform

The limiting caseis A — co and Ak — 0
* We call F(k) the Fourier transform of f{x), and vice versa
* We can toggle between real space (x) and reciprocal space (k)

0o %)

f(x) = 1 F(k)e™*dk F(k) = 1 f f(x)e k*dx

Vim V21
—00 _oo
A

A duck in real space .Aduck in /ﬁ Im Argand diagram for real

reciprocal space and im agin ary

e components

" v

Credit: Dr. David Cowtan,
University of York




Fourier optics: Young’s double slit experiment

monochromatic
planar wave
(e.g. a laser)

screen with optical optical screen
two slits screen (front view)



An important Fourier transform: Young’s double slit

d d Y(q) = po(e'9Y/? + e7144/2)
Alx) = 6(x——)+5(x+—>
2 2 qd
= izes(2

AAgx)

¥(q)
B 2 Sin 6
1=773




We don’t see the transform, but its amplitude squared

2
I(g) is our intensity or I(a) « ﬂ
diffraction function (@) 0% 2 I(q) &1 + cos(qd)
AAgx) ! CI) 21,
| N\ ] N




Bragg’s law from Fourier transform of a diffraction grating

A(x) = z 6(x=md) |20 27sind I(q) z 6(q —nqo)
mee d p i

A(O) nA =dsinf I&q)




The phase problem with cats and ducks

animals in real space

>

animals in reciprocal space

=)

Credit: Dr. David Cowtan, University of York




The phase problem, mixing phases and amplitudes

amplitudes from original animal, but
phases from opposite animal

v . o -

I 3 Credit: Dr. David
Cowtan,
University of York







The differential cross-section

When neutrons (or X-rays)
scattered by the sample,
we use o to represent
number scattered particles

ds
T2

Scattered
direction

ds /¢,e

dQ}

We are after the
differential cross-
section

Incident
——

do particles

d(}




Flux of particles from beam and scattering at a solid angle

® = Flux of incoming particles

Number per unit time per
unit area (st cm) Scattered

direction

ds /¢,e

Scattering occurs within
the plane by 20 and out

by angle ¢

Incident

We can define the —I——> =§
solid angle as AQ ~ Particies = Sample



The differential and double differential cross section

® = number of incident neutrons per cm” per second
o = total number of neutrons scattered per second / @
do number of neutrons scattered per second into d2
o ® dO
d’c ~ number of neutrons scattered per second into d€2 & dE
dQdE ® dQ dE




Plane waves impinge on a single atom

elkx

Yy =1of(4,0)

r

z-direction

Top-down view of
incident plane wave
arriving at atomic center.

A Y + \~ ‘O ’
) ) . ‘, 'l ' 4
A - ~h____- 7 ’
. 5 P ’
. - * ’
. 4 s. ’ ¢
1kz . . .
" — e ‘~ Il I "
L — 0 vl it
N '
h~-
:

-
-
-’—-
-




The ‘aperture’ function f(A,0) for scattering a plane wave

* We approximate f(A,0) as a constant for neutron scattering as a fixed point.
* For x-rays, we cannot make this approximation which affects f(A,0)

Increasing slit-size means that the scattered wave has more 20-dependence

Intensity drops off at higher scattering angles

GIFs of plane wave arriving at a slit



The neutron scattering length

* In neutron scattering, the nucleus is a point source.

* f(A,0) is therefore a constant

* f(A,0) = b where b is known as the scattering length

elkx

I/Jf =Yof(4,0)

r

* Note that f(A,0) and b must have
units of length since it is divided by r

e Typical bareinfmor 101 m

 Can be positive or negative!

BJ
[

— [
L = =

Coherent scattering length (fm)
=]

Atomic number



The neutron scattering cross section

R O ds

Rate = incident flux x cross-sectional area

)
Wol? = fuy|" = IFAO)I
T 2T
2
R=| [l as
20=0 ¢$p=0

Incident

o = 4m|b|?

o =2m flf(/l 0)]|?sin20d20  neutrons |
26=0

Scattered
direction

ds / 5,0

dQ



Neutron scattering length for hydrogen

* Units given in barns, where 1 barn = 10?8 m?

* These are isotope specific and will depend on the

orientation of nuclear spin with respect to the neutron
bt =1.085 x 10~ *m

* Example hydrogen vs. deuterium
b~ = —4.750 x 10~ *m

* H has triplet and singlet from proton

(b) = —b+ i b‘ Ab = \/(b2) — (b)?

b =<(b)tAb

() = —0.374 x 10~ %m  Ab =2527x 10" m



Neutron scattering length for deuterium

* Deuterium has a quartet and doublet from proton and neutron in its

nucleus
» 2/3 of states are quartet, 1/3 are doublet
2 1 o = 41|b|?
<b>:§b++§b_ | |
(b) = 0.668 X 10~ 1*m (b2) = (b)2 + (Ab)?

Ab = 0.403 X 10~ 14m? (0) = Ocon + Oinc

(barms) | ozgy = 4m(b)’ |0y = dm(Ah)

Hydrogen 1.76 80.27
Deuterium 5.59 2.05




* The x-rayisa
electromagnetic
radiation with the
electric field E;,
oscillating normal to the
wave’s propagation.

* The electrons in the
atomic center will
oscillate with the x-ray
and re-emit the x-ray
with the oscillating field
E

rad

Thompson scattering
length of the electron

—p ()

The intrinsic cross section for x-rays

E_(R,?) =
aa (Rs7) Ame,c’R

Erad(Rﬁt)
=—r,o(w
E o (W)

2

e

=2.82x10""m

K 2

drte ,mc




The cross section for x-rays

Measured intensity (1.e. number of X - ray photons) a energy/sec
Energy per unit area of beam o E” ;

rad 2R2AQ

E. [ 4

. . . do  number of xrays scattered per sec in AQ
differential cross section = —

dQ (number of incident xrays per area) * AQ

RZ

2

E

intensity measured in detector [

—

incident intensity I,

1n

2

do I, |E

dQ (I, HAQ

rad

E.

mn

) 2
=7, COS" W




The atomic form factor for x-rays

Atomic Form Factor: /' (§) = f p(F)eig'FdV

10 e pOint@lom
7'(@) /g=0=2
8 /(g —=>)=0
5 | FI™\_Ne Mg?* \Si*
4 L
) | Atomic Form Factor with
Dispersion Corrections:
f(G.hw)=f"(§)+ f (hw)+if (ho)
0 | | | | |

0 2 4 6 8 10

q (A

12



Scattering from multiple atoms

Diffraction from a crystal




The scattering triangle

* k.is the incident
wavevector and kfis the kf
scattered wavevector

e Useful to work with
another vector besides

k; or k;

* We define Q, as our
momentum transfer




Momentum transfer, or Q-space

Q=ki—kr 9 Q=kr—k 75
> 2T
k| = - Scattering angle

For elastic scattering,
no energy transfer

k| = [ke]

_4nsin9
ol )
@=‘k‘sin8




Scattering from an ensemble of atoms

Waves scattered can add
up in phase

g =




Adding up the waves scattered from different centers

iko R,

At a scattering center located at R . the incident wave 1s e

—

k.
so the scattered wave atr 1s i = Ee’ o

2

.¢d(7__\%ig

wscat

- _ _ ds bieiE'.FE _ el(ko k').R;
749 vd Q2 749 ‘”_ i

bl) i(ko=k").(R~=R,) jgl’b -i0.(R-R,)
a2

Tk | -b.

1

—

_‘f—R.

1

2

e

ik (F-R,)

Incident

—_—
neutrons

do 2 i(ky—k").(R—R.) ’1—COSZ 20
For x-rays: — =r, e’ r
S OE y)

L]

|

dQ

Scattered
direction

as /¢,e



A crystal has translational symmetry

| R

Real Reciprocal

21
cos(30%) a




Relationship between real and reciprocal space in crystals

Reciprocal
Lattice:

V., =al -(52xc73)
e 27 . .
a, = 70612 X d,
e 27 . .
a, = 7Ca3 Xda,
e 2T . L
a, =—a, Xda,

7

C



Diffraction and Bragg’s law

G, is called a reciprocal lattice vector (node denoted hkl)

e (hkl) describes a set of
h, k and | are called Miller indices planes perpendicular to

Ehkv se_paéated by dy,

e {hkl} represents a set of

etr4ﬁe§}?@ lattice

dhkl A

. * [hkl] describes a
crystallographic direction

nA =2 hkl sin @

. e <hkl> describes a set of
symmetry equivalent

_ crystallographic
(hk)=(260) d|¥ect|on% P




Example: diffraction from a crystal — the fcc lattice

* A monochromatic (single 1) neutron beam is
diffracted by a single crystal only if specific
geometrical conditions are fulfilled

« Useful A are typically between 0.4 A and 2.5 A.

* These conditions can be expressed in several ways:

 Laue’s conditions: with h, k, and | as integers
* Bragg s Law:
« Ewald’ s construction

 Diffraction tells us about:
* The dimensions of the unit cell
* The symmetry of the crystal
* The positions of atoms within the unit cell
* The extent of thermal vibrations of atoms
in various directions

I
P

Lattice in real space



Relationship between

Real Space

900 9
000
o990 99

real and reciprocal space

Reciprocal Space



Beam of neutrons or x-rays scattered from planes

Real Space Reciprocal Space
® o o
@ o ®
® L ®
o® o ®
L o0 O ® 6 ©
®e ® e
® ® ®
o o ®



Bragg reflections from crystallographic planes

Real Space Reciprocal Space

& ® Scattering
Plane




Centering operations lead to systematic absences

Real Space Reciprocal Space

PY Py Scattering
Plane

{001} family of planes are systematically absent



Other allowed reflections in fcc lattice

Real Space Reciprocal Space

PY Py Scattering
Plane



[111] view of the (220) reflection

Real Space Reciprocal Space

o Scattering
° ® ®lane



The Ewald sphere and scattering triangle

Transmitted Beam

Bragg Reflection

Crystallographic Plane

Normal
Planes ,

Reciprocal Lattice

Lowest Harmonics in the
Scattering Plane

Momentum

Shange, (-202)

@ Initial\ @ /
Momentum inal
Direction Momentum

Direction
@

- Projection of the

/ Ewald Sphere
The Ewald Sphere

Radius is 21t/A

Incident Beam



Reciprocal Lattice

Lowest Harmonics in the
Scattering Plane

Momentum
Chang

@ nitial |\ @ /
Momentum § / F
Direction

- Projection of the

Ewald Sphere

./ Momentum
¥ Direction

Crystallographic
Planes

Plane
Normal

Transmitted Beam

Incident Beam

Bragg Reflection



Crystallographic

Planes Plane

Normal

Reciprocal Lattice

Lowest Harmonics in the
Scattering Plane




Crystallographic
Planes

Reciprocal Lattice

Lowest Harmonics in the
Scattering Plane

Momentum
Change



Reciprocal Lattice

Lowest Harmonics in the
Scattering Plane

Momentum
Change

(-2-24)

Crystallographic
Planes

Plane
Normal

/

§




Crystallographic Plane
Planes Normal
Reciprocal Lattice

Lowest Harmonics in the
Scattering Plane

Momentum




For x-ray and neutron scattering, we are dealing with the scattering of plane
waves by atoms and nuclei.

1 [ |
F(k =—f x)e kX dy
(k) m_oo f(x)
neutrons
d
d_fal =15 ZV(QNZQ_Q'(RFR") P(20)
L]

When G, = Q, Bragg’s Law
nA = 2dhkl sin 6




Mej ‘

neutron Seattering
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