

Acknowledgements

Sunil Sinha
UC San Diego

Jacob Tosado U. Maryland

Roger Pynn
U. Indiana

Acknowledgements

都

Outline

1. Scattering geometry basics: Plane waves and Fourier transforms

2. Scattering cross sections for neutrons and x-rays
3. Scattering from ensemble of atoms and diffraction

Scattering geometry basics

Plane waves and
Fourier transforms

Scattering geometry basics: The sinusoidal wave

$A=$ amplitude
$\theta=$ angle
$\phi=$ phase difference
$\cos \theta=\sin (\theta+\pi / 2)$

$$
\psi=A \sin (\theta+\phi)
$$

Scattering geometry basics: The wavenumber k
$\psi=A \sin (\theta+\phi)$
$k=$ wavenumber
$x=$ position
$\lambda=$ wavelength
$k=\frac{2 \pi}{\lambda}$
k has SI units of rad m ${ }^{-1}$
$\psi=A \sin (k x+\phi)$

Scattering geometry basics: The travelling wave

Wave moves in x-direction with time, t
$\psi=A \sin (k x+\phi)$
$\phi_{0}=$ initial phase angle $\phi=$ phase after time t
ω = angular frequency
$\omega=2 \pi v$
$\phi=\phi_{0}-\omega t$

$$
\psi=A \sin \left(k x-\omega t+\phi_{0}\right)
$$

Scattering geometry basics: The plane wave
We define a plane wave: Amplitude in the z-direction, Propagates in y - and x-directions. $\vec{r}=$ direction of propagation $\vec{k}=$ wavevector

$$
|\vec{k}|=\frac{2 \pi}{\lambda}
$$

$$
\psi=A \sin \left(\vec{k} \cdot \vec{r}-\omega t+\phi_{0}\right)
$$

Scattering geometry basics: The traveling plane wave

Plane wave in x-direction only
Plane wave in $x y$-direction

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State

- Useful to work with exponential over sinusoidal waves
- Complex numbers allow us to simplify wavefunction equations
$\mathrm{i}=$ imaginary number

$$
\begin{aligned}
e^{\mathrm{i} \theta} & =\cos \theta+\mathrm{i} \sin \theta \\
\psi & =A \sin \left(\vec{k} \cdot \vec{r}-\omega t+\phi_{0}\right)
\end{aligned}
$$

$$
\psi=A e^{\mathrm{i}(\vec{k} \cdot \vec{r}-\omega t)}
$$

Scattering geometry basics: Complex numbers

[-

Scattering geometry basics: The Fourier series

- We approximate a periodic structure through a sum of cosines and sines.
- Let $f(x)$ be a function expanded by a Fourier series

$$
\left.\xrightarrow{f(x) \approx a_{0}+a_{1} \cos (k x)+a_{2} \cos (2 k x)+a_{3} \cos (3 k x)+\cdots} \begin{array}{l:l}
f b_{1} \sin (k x) & b_{2} \sin (2 k x) \\
b_{2} \sin \left(b_{3} \sin (3 k x)\right. & \cdots
\end{array} \right\rvert\, \begin{aligned}
& \text { Goes to } \\
& \text { zero if } \\
& f(x)=f(-x)
\end{aligned}
$$

$n=1$, fundamental harmonic

$n=3$, higher harmonics included

- We write sum more efficiently if we pick the coefficients correctly.
- Now a definition and not approximation.

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n k x}
$$

$$
\text { where } \quad c_{-n}=c_{n}^{*}
$$

$$
c_{n}=\frac{1}{\lambda} \int_{0}^{\lambda} f(x) e^{-\mathrm{i} n k x} \mathrm{~d} x
$$

- We extend the analysis to a nonperiodic function
- The Fourier coefficients become continuous functions we call $F(k)$

$$
c_{n}=\frac{1}{\sqrt{2 \pi}} F(k) \Delta k
$$

The Fourier transform

The limiting case is $\lambda \rightarrow \infty$ and $\Delta k \rightarrow 0$

- We call $F(k)$ the Fourier transform of $f(x)$, and vice versa
- We can toggle between real space (x) and reciprocal space (k)

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{\mathrm{i} k x} \mathrm{~d} k
$$

$$
F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-\mathrm{i} k x} \mathrm{~d} x
$$

Argand diagram for real and imaginary components

Credit: Dr. David Cowtan, University of York

Fourier optics: Young's double slit experiment

An important Fourier transform: Young's double slit

$$
A(x)=\delta\left(x-\frac{d}{2}\right)+\delta\left(x+\frac{d}{2}\right)
$$

$$
\begin{aligned}
& \psi(q)=\psi_{0}\left(e^{i q d / 2}+e^{-i q d / 2}\right) \\
& \psi(q)=\psi_{0} 2 \cos \left(\frac{q d}{2}\right)
\end{aligned}
$$

$$
q=\frac{2 \pi \sin \theta}{\lambda}
$$

We don't see the transform, but its amplitude squared

$I(q)$ is our intensity or diffraction function

$$
I(q) \propto\left[\cos \left(\frac{q d}{2}\right)\right]^{2} \quad I(q) \propto 1+\cos (q d)
$$

Bragg's law from Fourier transform of a diffraction grating

$$
A(x)=\sum_{m=-\infty}^{\infty} \delta(x-m d) \frac{2 \pi n}{d}=\frac{2 \pi \sin \theta}{\lambda} I(q) \propto \sum_{n=-\infty}^{\infty} \delta\left(q-n q_{0}\right)
$$

The phase problem with cats and ducks

animals in real space

Credit: Dr. David Cowtan, University of York

The phase problem, mixing phases and amplitudes

amplitudes from original animal, but phases from opposite animal

Credit: Dr. David Cowtan, University of York

The differential cross-section

When neutrons (or X-rays) scattered by the sample, we use σ to represent number scattered particles

$$
\mathrm{d} \Omega=\frac{\mathrm{d} S}{r^{2}}
$$

We are after the differential crosssection

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}
$$

Flux of particles from beam and scattering at a solid angle

$\Phi=$ Flux of incoming particles
Number per unit time per unit area ($\mathrm{s}^{-1} \mathrm{~cm}^{-2}$)

Scattering occurs within the plane by 2θ and out by angle ϕ

We can define the solid angle as $\Delta \Omega$

$\Phi=$ number of incident neutrons per cm^{2} per second $\sigma=$ total number of neutrons scattered per second / Φ
$\frac{d \sigma}{d \Omega}=\frac{\text { number of neutrons scattered per second into } \mathrm{d} \Omega}{\Phi \mathrm{d} \Omega}$
$\frac{d^{2} \sigma}{d \Omega d E}=\frac{\text { number of neutrons scattered per second into } \mathrm{d} \Omega \& \mathrm{dE}}{\Phi \mathrm{d} \Omega \mathrm{dE}}$

Plane waves impinge on a single atom

The 'aperture' function $f(\lambda, \theta)$ for scattering a plane wave

- We approximate $f(\lambda, \theta)$ as a constant for neutron scattering as a fixed point.
- For x-rays, we cannot make this approximation which affects $f(\lambda, \theta)$

Increasing slit-size means that the scattered wave has more 2θ-dependence Intensity drops off at higher scattering angles

GIFs of plane wave arriving at a slit

The neutron scattering length

- In neutron scattering, the nucleus is a point source.
- $f(\lambda, \theta)$ is therefore a constant
- $f(\lambda, \theta)=b$ where b is known as the scattering length

$$
\psi_{f}=\psi_{0} f(\lambda, \theta) \frac{e^{\mathrm{i} k x}}{r}
$$

- Note that $f(\lambda, \theta)$ and b must have units of length since it is divided by r
- Typical b are in fm or $10^{-15} \mathrm{~m}$
- Can be positive or negative!

The neutron scattering cross section

$\underline{R} \quad \underline{d S}$

$\underline{\text { Rate }}=\underline{\text { incident flux }} \times \underline{\text { cross-sectional area }}$

$$
\sigma=4 \pi|b|^{2}
$$

- Units given in barns, where 1 barn $=10^{-28} \mathrm{~m}^{2}$
- These are isotope specific and will depend on the orientation of nuclear spin with respect to the neutron
- Example hydrogen vs. deuterium

$$
\begin{aligned}
& b^{+}=1.085 \times 10^{-14} \mathrm{~m} \\
& b^{-}=-4.750 \times 10^{-14} \mathrm{~m}
\end{aligned}
$$

- H has triplet and singlet from proton

$$
b=\langle b\rangle \pm \Delta b
$$

$$
\Delta b=\sqrt{\left\langle b^{2}\right\rangle-\langle b\rangle^{2}}
$$

$$
\Delta b=2.527 \times 10^{-14} \mathrm{~m}
$$

$\langle b\rangle=-0.374 \times 10^{-14} \mathrm{~m} \quad \Delta b=2.527 \times 10^{-14} \mathrm{~m}$

Neutron scattering length for deuterium

- Deuterium has a quartet and doublet from proton and neutron in its nucleus
- $2 / 3$ of states are quartet, $1 / 3$ are doublet

$$
\begin{aligned}
\langle b\rangle & =\frac{2}{3} b^{+}+\frac{1}{3} b^{-} & \sigma & =4 \pi|b|^{2} \\
\langle b\rangle & =0.668 \times 10^{-14} m & \left\langle b^{2}\right\rangle & =\langle b\rangle^{2}+(\Delta b)^{2} \\
\Delta b & =0.403 \times 10^{-14} m^{2} & \langle\sigma\rangle & =\sigma_{c o h}+\sigma_{\text {inc }}
\end{aligned}
$$

(barns)	$\sigma_{c o h}=4 \pi\langle b\rangle^{2}$	$\sigma_{\text {incoh }}=4 \pi(\Delta b)^{2}$
Hydrogen	1.76	80.27
Deuterium	5.59	2.05

The intrinsic cross section for x-rays

- The x-ray is a electromagnetic radiation with the electric field $E_{\text {in }}$ oscillating normal to the wave's propagation.
- The electrons in the atomic center will oscillate with the x-ray and re-emit the x-ray with the oscillating field $E_{\text {rad }}$

$$
\begin{aligned}
& \text { Thompson scattering } \\
& \text { length of the electron }
\end{aligned} \longrightarrow r_{0}=\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}=2.82 \times 10^{-15} \mathrm{~m}
$$

$$
\begin{array}{r}
\vec{E}_{\mathrm{in}}=\vec{E}_{0} e^{\mathrm{i}(\vec{k} \cdot \vec{r}-\omega t)} \\
E_{\mathrm{rad}}(R, t)=\frac{e}{4 \pi \varepsilon_{0} c^{2} R} \ddot{x}(t-R / c)
\end{array}
$$

The cross section for x-rays

Measured intensity (i.e. number of x - ray photons) α energy/sec
Energy per unit area of beam αE^{2};
$\Rightarrow \frac{\text { intensity measured in detector }}{\text { incident intensity }}=\frac{I_{s c}}{I_{0}}=\frac{\left|E_{r a d}\right|^{2} R^{2} \Delta \Omega}{\left|\mathrm{E}_{\mathrm{in}}\right|^{2} A}$
differential cross section $=\frac{d \sigma}{d \Omega}=\frac{\text { number of xrays scattered per sec in } \Delta \Omega}{(\text { number of incident xrays per area) } * \Delta \Omega}$
$\frac{d \sigma}{d \Omega}=\frac{I_{s c}}{\left(I_{0} / A\right) \Delta \Omega}=\frac{\left|E_{r a d}\right|^{2} R^{2}}{\left|\mathrm{E}_{\mathrm{in}}\right|^{2}}=r_{0}^{2} \cos ^{2} \psi$

The atomic form factor for x-rays

Scattering from multiple atoms Diffraction from a crystal

The scattering triangle

- k_{i} is the incident wavevector and k_{f} is the scattered wavevector
- Useful to work with another vector besides k_{i} or k_{f}
- We define Q, as our momentum transfer

Sample

Scattering angle
$-\vec{k}_{f}$

$$
\overrightarrow{\boldsymbol{Q}}=\overrightarrow{\boldsymbol{k}}_{\boldsymbol{i}}-\overrightarrow{\boldsymbol{k}}_{\boldsymbol{f}}
$$

Sample

Scattering angle

Momentum transfer, or Q-space

$$
\vec{Q}=\vec{k}_{i}-\vec{k}_{f} \quad \text { or } \quad \vec{Q}=\vec{k}_{f}-\vec{k}_{i}
$$

$$
|\vec{k}|=\frac{2 \pi}{\lambda}
$$

For elastic scattering, no energy transfer

$$
\begin{aligned}
& \left|\vec{k}_{i}\right|=\left|\vec{k}_{f}\right| \\
& \frac{|\vec{Q}|}{2}=|\vec{k}| \sin \theta
\end{aligned}
$$

Scattering from an ensemble of atoms

$$
\vec{Q}=\vec{k}_{f}-\vec{k}_{i}
$$

Adding up the waves scattered from different centers

At a scattering center located at \vec{R}_{i} the incident wave is $e^{i \vec{k}_{0} \cdot \bar{R}_{i}}$
so the scattered wave at \vec{r} is $\psi_{\text {scat }}=\sum e^{i \vec{k}_{0} \cdot \vec{R}_{i}}\left[\frac{-\mathrm{b}_{\mathrm{i}}}{\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{i}}\right|} e^{i \overrightarrow{k_{k}} \cdot\left(\vec{r}-\vec{R}_{i}\right)}\right]$
$\therefore \frac{d \sigma}{d \Omega}=\frac{v d S\left|\psi_{\text {scat }}\right|^{2}}{v d \Omega}=\frac{d S}{d \Omega}\left|b_{i} b_{i}^{i k^{\prime} \cdot \vec{r}} \sum \frac{1}{\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{i}}\right|} e^{i\left(\vec{k}_{0}-\vec{k}^{\prime}\right) \cdot \vec{R}_{i}}\right|^{2}$

$$
\frac{d \sigma}{d \Omega}=\sum_{i, j} b_{i} b_{j} e^{i\left(\vec{k}_{0}-\vec{k}^{2}\right) \cdot\left(\vec{R}_{i}-\vec{R}_{j}\right)}=\sum_{i, j} b_{i} b_{j} e^{-i \vec{Q}^{(} \cdot\left(\vec{R}_{i}-\vec{R}_{j}\right)}
$$

For x-rays: $\frac{d \sigma}{d \Omega}=r_{0}^{2} \sum_{i, j} e^{i\left(\vec{k}_{0}-\vec{k}^{\prime}\right) \cdot\left(\vec{R}_{i}-\vec{R}_{j}\right)}\left\{\frac{1-\cos ^{2} 2 \theta}{2}\right\}$

A crystal has translational symmetry

1D

2D

Real

Reciprocal

Relationship between real and reciprocal space in crystals

Reciprocal Lattice:

$$
\begin{aligned}
& V_{\mathrm{c}}=\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right) \\
& \vec{a}_{1}^{*}=\frac{2 \pi}{V_{\mathrm{c}}} \vec{a}_{2} \times \vec{a}_{3} \\
& \vec{a}_{2}^{*}=\frac{2 \pi}{V_{\mathrm{c}}} \vec{a}_{3} \times \vec{a}_{1} \\
& \vec{a}_{3}^{*}=\frac{2 \pi}{V_{\mathrm{c}}} \vec{a}_{1} \times \vec{a}_{2}
\end{aligned}
$$

Diffraction and Bragg's law

$\mathrm{G}_{\mathrm{hkl}}$ is called a reciprocal lattice vector (node denoted hkl)
h, k and I are called Miller indices

- (hkl) describes a set of planes perpendicular to $\hat{Z}_{\text {hkl }}$, separated by $\mathrm{d}_{\mathrm{hkl}}$
- $\{\mathrm{hkl}$ \} represents a set of Extrinetryfedatedy lattice $\frac{\text { planes }}{d_{h k l}}=\frac{\lambda}{\lambda}$
- [hkl] describes a crystallographic direction $n \lambda=2 d_{h k l} \sin \theta$
- <hkl> describes a set of symmetry equivalent crystallographic directions

Example: diffraction from a crystal - the fcc lattice

- A monochromatic (single λ) neutron beam is diffracted by a single crystal only if specific geometrical conditions are fulfilled
- Useful λ are typically between $0.4 \AA$ and $2.5 \AA$.
- These conditions can be expressed in several ways:
- Laue's conditions: with h, k, and l as integers
- Bragg' s Law:
- Ewald' s construction
- Diffraction tells us about:

- The dimensions of the unit cell
- The symmetry of the crystal
- The positions of atoms within the unit cell
- The extent of thermal vibrations of atoms in various directions

Lattice in real space

Relationship between real and reciprocal space

Real Space

Reciprocal Space

Beam of neutrons or x-rays scattered from planes

Real Space

Reciprocal Space

res

Beam of neutrons or x-ravs scattered from planes

Bragg reflections from crystallographic planes

Real Space

\{001\} family of planes are systematically absent

Centering operations lead to systematic absences

Other allowed reflections in fcc lattice

-


```
                    |
```


coces
coces

coser

\square

-
 -

 \section*{}
 [111] view of the (220) reflection
 \qquad

 -

 \qquad
 .

(a)

正
\square

```
*
```

```
*
```

```
*
```

\qquad

The Ewald sphere and scattering triangle

Radius is $2 \pi / \lambda$

Ewald Sphere

Crystallographic Planes

Crystallographic

Crystallographic

Summary

For x-ray and neutron scattering, we are dealing with the scattering of plane waves by atoms and nuclei.

$$
F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-\mathrm{i} k x} \mathrm{~d} x
$$

neutrons

$$
\frac{d \sigma}{d \Omega}=\sum_{i, j} b_{i} b_{j} e^{-\boldsymbol{Q} \cdot\left(\boldsymbol{R}_{i}-\boldsymbol{R}_{\boldsymbol{j}}\right)}
$$

$$
|\vec{Q}|=\frac{4 \pi \sin \theta}{\lambda}
$$

When $\mathbf{G}_{\text {hkl }}=\boldsymbol{Q}$, Bragg's Law

$$
n \lambda=2 d h k l \sin \theta
$$

Questions？
Questions？
neutron scattering

－3 －

 \square \square
\square
\square 相號

路
Questions？
Questions？
Questions？
Questions？
Questions？
Questions？
Questions？

電

正

