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Scattering geometry basics
Plane waves and 
Fourier transforms



Scattering geometry basics: The sinusoidal wave

A

-A

ψ= 𝐴𝐴 sin𝜃𝜃 ψ = 𝐴𝐴 cos𝜃𝜃

ψ

𝜓𝜓 = 𝐴𝐴 sin(𝜃𝜃 + 𝜙𝜙)

cos𝜃𝜃 = sin(𝜃𝜃 + 𝜋𝜋/2)

A = amplitude
θ = angle
φ = phase difference

θππ
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𝐴𝐴 sin𝜃𝜃

𝐴𝐴 cos 𝜃𝜃
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Scattering geometry basics: The wavenumber k

𝜓𝜓 = 𝐴𝐴 sin(𝑘𝑘𝑘𝑘 + 𝜙𝜙)

k = wavenumber
x = position
λ = wavelength

λ
A

-A

ψ

x

𝜓𝜓 = 𝐴𝐴 sin(𝜃𝜃 + 𝜙𝜙)

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆

k has SI units of rad m-1



Scattering geometry basics: The travelling wave
ψ

Wave moves in x-direction with time, t

𝜙𝜙0 = initial phase angle
𝜙𝜙 = phase after time t
ω = angular frequency x

𝜔𝜔 = 2𝜋𝜋𝜋𝜋

φ
𝜓𝜓 = 𝐴𝐴 sin(𝑘𝑘𝑘𝑘 + 𝜙𝜙)

𝜙𝜙 = 𝜙𝜙0 − 𝜔𝜔𝜔𝜔

𝜓𝜓 = 𝐴𝐴 sin(𝑘𝑘𝑘𝑘 − 𝜔𝜔𝜔𝜔 + 𝜙𝜙0)

λ
A

-A



Scattering geometry basics: The plane wave

y

x

λ

k
ky

kx

We define a plane wave:
Amplitude in the z-direction,
Propagates in y- and x-directions.

r = direction of propagation

k = wavevector

𝜓𝜓 = 𝐴𝐴 sin(𝑘𝑘 � 𝑟𝑟 − 𝜔𝜔𝜔𝜔 + 𝜙𝜙0)

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆



Scattering geometry basics: The traveling plane wave

Plane wave in x-direction only Plane wave in xy-direction

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State



Scattering geometry basics: Complex numbers

• Useful to work with exponential 
over sinusoidal waves

• Complex numbers allow us to 
simplify wavefunction
equations

𝑒𝑒i𝜃𝜃 = cos𝜃𝜃 + i sin𝜃𝜃

i = imaginary number θ

Argand diagram

𝑧𝑧 = 𝑎𝑎 + i𝑏𝑏

Re {z} = a Im {z} = b

Im

Re

b

a

𝑧𝑧∗ = 𝑎𝑎 − i𝑏𝑏
𝜓𝜓 = 𝐴𝐴 sin(𝑘𝑘 � 𝑟𝑟 − 𝜔𝜔𝜔𝜔 + 𝜙𝜙0)

r

𝜓𝜓 = 𝐴𝐴𝑒𝑒i 𝑘𝑘�𝑟𝑟−𝜔𝜔𝜔𝜔



Scattering geometry basics: The Fourier series
• We approximate a periodic structure through a sum of cosines and sines.
• Let f(x) be a function expanded by a Fourier series

𝑓𝑓 𝑥𝑥 ≈ 𝑎𝑎0 + 𝑎𝑎1 cos 𝑘𝑘𝑘𝑘 + 𝑎𝑎2 cos 2𝑘𝑘𝑘𝑘 +𝑎𝑎3 cos 3𝑘𝑘𝑘𝑘 +⋯
+ 𝑏𝑏1 sin 𝑘𝑘𝑘𝑘 + 𝑏𝑏2sin 2𝑘𝑘𝑘𝑘 + 𝑏𝑏3 sin 3𝑘𝑘𝑘𝑘 + ⋯

n = 1, fundamental harmonic n = 3, higher harmonics included

Goes to 
zero if 
f(x) = f(-x)



The Fourier coefficients

• We write sum more efficiently if we pick the coefficients correctly.
• Now a definition and not approximation.

𝑓𝑓 𝑥𝑥 = �
𝑛𝑛=−∞

∞

𝑐𝑐𝑛𝑛 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

where 𝑐𝑐−𝑛𝑛 = 𝑐𝑐𝑛𝑛∗

𝑐𝑐𝑛𝑛 =
1
𝜆𝜆
�
0

𝜆𝜆

𝑓𝑓(𝑥𝑥)𝑒𝑒−i𝑛𝑛𝑛𝑛𝑛𝑛d𝑥𝑥

• We extend the analysis to a non-
periodic function

• The Fourier coefficients become 
continuous functions we call F(k)

𝑐𝑐𝑛𝑛 =
1
2𝜋𝜋

𝐹𝐹(𝑘𝑘)∆𝑘𝑘



The Fourier transform
The limiting case is 𝜆𝜆 → ∞ and ∆𝑘𝑘 → 0
• We call F(k) the Fourier transform of f(x), and vice versa
• We can toggle between real space (x) and reciprocal space (k)

𝑓𝑓 𝑥𝑥 =
1
2𝜋𝜋

�
−∞

∞

𝐹𝐹(𝑘𝑘)𝑒𝑒i𝑘𝑘𝑘𝑘d𝑘𝑘 𝐹𝐹 𝑘𝑘 =
1
2𝜋𝜋

�
−∞

∞

𝑓𝑓(𝑥𝑥)𝑒𝑒−i𝑘𝑘𝑘𝑘d𝑥𝑥

A duck in real space A duck in 
reciprocal space

Argand diagram for real 
and imaginary 
components

Im

Re

Credit: Dr. David Cowtan, 
University of York



Fourier optics: Young’s double slit experiment

θ
𝑞𝑞 =ksinθ

ki

kf

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆



An important Fourier transform: Young’s double slit

𝒙𝒙

𝑨𝑨(𝒙𝒙)

𝑑𝑑

𝐴𝐴 𝑥𝑥 = 𝛿𝛿 𝑥𝑥 −
𝑑𝑑
2

+ 𝛿𝛿 𝑥𝑥 +
𝑑𝑑
2

𝒒𝒒

𝝍𝝍(𝒒𝒒)

𝜓𝜓 𝑞𝑞 = 𝜓𝜓0 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/2 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/2

𝜓𝜓 𝑞𝑞 = 𝜓𝜓02 cos
𝑞𝑞𝑞𝑞
2

𝑞𝑞 =
2𝜋𝜋 sin𝜃𝜃

𝜆𝜆



We don’t see the transform, but its amplitude squared

𝒙𝒙

𝑨𝑨(𝒙𝒙)

𝑑𝑑

𝐼𝐼 𝑞𝑞 ∝ cos
𝑞𝑞𝑞𝑞
2

2

𝐼𝐼 𝑞𝑞 ∝ 1 + cos(𝑞𝑞𝑞𝑞)I(q) is our intensity or 
diffraction function

𝒒𝒒

𝑰𝑰(𝒒𝒒)
2 𝜋𝜋
𝑑𝑑



Bragg’s law from Fourier transform of a diffraction grating

𝒙𝒙

𝑨𝑨(𝒙𝒙)
𝑑𝑑

𝒒𝒒

𝑰𝑰(𝒒𝒒)
2 𝜋𝜋
𝑑𝑑

𝐴𝐴 𝑥𝑥 = �
𝑚𝑚=−∞

∞

𝛿𝛿(𝑥𝑥 −𝑚𝑚𝑚𝑚) 𝐼𝐼 𝑞𝑞 ∝ �
𝑛𝑛=−∞

∞

𝛿𝛿(𝑞𝑞 − 𝑛𝑛𝑞𝑞0)2𝜋𝜋𝜋𝜋
𝑑𝑑

=
2𝜋𝜋 sin𝜃𝜃

𝜆𝜆

𝑛𝑛𝜆𝜆 = 𝑑𝑑 sin𝜃𝜃



The phase problem with cats and ducks
animals in real space animals in reciprocal space

Im

Re

Credit: Dr. David Cowtan, University of York



The phase problem, mixing phases and amplitudes
amplitudes from original animal, but 

phases from opposite animal

Im

Re

Credit: Dr. David 
Cowtan, 
University of York



Scattering cross sections
neutrons and x-rays



The differential cross-section

When neutrons (or X-rays) 
scattered by the sample, 
we use σ to represent 
number scattered particles

particles

We are after the 
differential cross-
section

dΩ =
d𝑆𝑆
𝑟𝑟2

d𝜎𝜎
dΩ



Flux of particles from beam and scattering at a solid angle

Φ = Flux of incoming particles 

Number per unit time per 
unit area (s-1 cm-2)

Scattering occurs within 
the plane by 2θ and out 
by angle φ

particles
We can define the 
solid angle as ∆Ω



The differential and double differential cross section

dE d 
dE & d into secondper  scattered neutrons ofnumber 

d 
d into secondper  scattered neutrons ofnumber 

 / secondper  scattered neutrons ofnumber   total
secondper  cmper  neutronsincident  ofnumber   

2

2

ΩΦ
Ω

=
Ω

ΩΦ
Ω

=
Ω

Φ=
=Φ

dEd
d

d
d

σ

σ
σ



Plane waves impinge on a single atom

Top-down view of 
incident plane wave 
arriving at atomic center.

𝜓𝜓𝑖𝑖 = 𝜓𝜓0𝑒𝑒i𝑘𝑘𝑘𝑘

𝑒𝑒i𝑘𝑘𝑘𝑘 2θ
r

𝜓𝜓𝑓𝑓 = 𝜓𝜓0𝑓𝑓(𝜆𝜆,𝜃𝜃)
𝑒𝑒i𝑘𝑘𝑘𝑘

𝑟𝑟

z-direction



The ‘aperture’ function f(λ,θ) for scattering a plane wave

• We approximate f(λ,θ) as a constant for neutron scattering as a fixed point.
• For x-rays, we cannot make this approximation which affects f(λ,θ)

Increasing slit-size means that the scattered wave has more 2θ-dependence
Intensity drops off at higher scattering angles

GIFs of plane wave arriving at a slit



The neutron scattering length
• In neutron scattering, the nucleus is a point source. 
• f(λ,θ) is therefore a constant
• f(λ,θ) = b where b is known as the scattering length

𝜓𝜓𝑓𝑓 = 𝜓𝜓0𝑓𝑓(𝜆𝜆,𝜃𝜃)
𝑒𝑒i𝑘𝑘𝑘𝑘

𝑟𝑟

• Note that f(λ,θ) and b must have 
units of length since it is divided by r

• Typical b are in fm or 10-15 m

• Can be positive or negative!



The neutron scattering cross section

𝜓𝜓0 2 = Φ 𝜓𝜓𝑓𝑓
2 =

Φ
𝑟𝑟2

𝑓𝑓(𝜆𝜆,𝜃𝜃) 2

𝜎𝜎 = 4𝜋𝜋 𝑏𝑏 2

𝜎𝜎 = 2𝜋𝜋 �
2𝜃𝜃=0

𝜋𝜋

𝑓𝑓(𝜆𝜆,𝜃𝜃) 2 sin2𝜃𝜃d2𝜃𝜃

Rate = incident flux x cross-sectional area
Φ dSR

𝑅𝑅 = �
2𝜃𝜃=0

𝜋𝜋

�
𝜙𝜙=0

2𝜋𝜋

𝜓𝜓𝑓𝑓
2 d𝑆𝑆 dSdS

Φ
Φ



Neutron scattering length for hydrogen

• Units given in barns, where 1 barn = 10-28 m2

• These are isotope specific and will depend on the 
orientation of nuclear spin with respect to the neutron

• Example hydrogen vs. deuterium
• H has triplet and singlet from proton

𝑏𝑏 = 𝑏𝑏 ± ∆𝑏𝑏
𝑏𝑏 =

3
4
𝑏𝑏+ +

1
4
𝑏𝑏−

𝑏𝑏 = −0.374 × 10−14𝑚𝑚

∆𝑏𝑏 = 𝑏𝑏2 − 𝑏𝑏 2

∆𝑏𝑏 = 2.527 × 10−14 𝑚𝑚

𝑏𝑏+ = 1.085 × 10−14𝑚𝑚
𝑏𝑏− = −4.750 × 10−14𝑚𝑚



Neutron scattering length for deuterium
• Deuterium has a quartet and doublet from proton and neutron in its 

nucleus
• 2/3 of states are quartet, 1/3 are doublet

𝑏𝑏 =
2
3
𝑏𝑏+ +

1
3
𝑏𝑏−

𝑏𝑏 = 0.668 × 10−14𝑚𝑚

∆𝑏𝑏 = 0.403 × 10−14𝑚𝑚2

𝜎𝜎 = 4𝜋𝜋 𝑏𝑏 2

𝑏𝑏2 = 𝑏𝑏 2 + ∆𝑏𝑏 2

𝜎𝜎 = 𝜎𝜎𝑐𝑐𝑐𝑐𝑐 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖

(barns)
Hydrogen 1.76 80.27
Deuterium 5.59 2.05

𝜎𝜎𝑐𝑐𝑐𝑐𝑐 = 4𝜋𝜋 𝑏𝑏 2 𝜎𝜎𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐 = 4𝜋𝜋 ∆𝑏𝑏 2



The intrinsic cross section for x-rays
• The x-ray is a 

electromagnetic 
radiation with the 
electric field Ein
oscillating normal to the 
wave’s propagation.

• The electrons in the 
atomic center will 
oscillate with the x-ray 
and re-emit the x-ray 
with the oscillating field 
Erad

Thompson scattering 
length of the electron



The cross section for x-rays

ψσ

σ

α

α

22
02

in

22

0

2
in

22

0

2

cos
E)/(

*area)per  raysincident x of(number 
 in secper  scattered  xraysofnumber   section cross aldifferenti

Eintensityincident 
detector in measuredintensity 

  ;   beam of areaunit per Energy 
energy/sec  photons)ray - xofnumber  (i.e.intensity  Measured

r
RE

AI
I

d
d

d
d

A
RE

I
I

E

radsc

radsc

==
∆Ω

=
Ω

∆Ω
∆Ω

=
Ω

=

∆Ω
==⇒



The atomic form factor for x-rays



Scattering from multiple atoms
Diffraction from a crystal



The scattering triangle

• ki is the incident 
wavevector and kf is the 
scattered wavevector

• Useful to work with 
another vector besides 
ki or kf

• We define Q, as our 
momentum transfer

Sample
2θki

kf

Q

Scattering angle

-kf
𝑸𝑸 = 𝒌𝒌𝒊𝒊 − 𝒌𝒌𝒇𝒇



Momentum transfer, or Q-space

Sample
2θki

kf

Q

θ

Scattering angle

-kf

𝑄𝑄 = 𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑓𝑓

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆

𝑄𝑄
2

= 𝑘𝑘 sin𝜃𝜃
𝑄𝑄 =

4𝜋𝜋 sin𝜃𝜃
𝜆𝜆

For elastic scattering, 
no energy transfer

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑓𝑓

𝑄𝑄 = 𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑖𝑖or



Scattering from an ensemble of atoms

2θ

ki

kf

Q

𝑄𝑄 =
4𝜋𝜋 sin𝜃𝜃

𝜆𝜆

𝑄𝑄 = 𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑖𝑖

Waves scattered can add 
up in phase



Adding up the waves scattered from different centers



A crystal has translational symmetry 



Relationship between real and reciprocal space in crystals



Diffraction and Bragg’s law

a*

b*
(hkl)=(260)

Ghkl

O
Ghkl = 2π/dhkl

k0
k•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

•      •      •      •      •      •      •      •      •      •      •

Ghkl is called a reciprocal lattice vector (node denoted hkl)

h, k and l are called Miller indices
• (hkl) describes a set of 

planes perpendicular to 
Ghkl, separated by dhkl

• {hkl} represents a set of 
symmetry-related lattice 
planes

• [hkl] describes a 
crystallographic direction

• <hkl> describes a set of 
symmetry equivalent 
crystallographic 
directions

𝐺⃗𝐺ℎ𝑘𝑘𝑘𝑘 = 𝑄𝑄

2𝜋𝜋𝜋𝜋
𝑑𝑑ℎ𝑘𝑘𝑘𝑘

=
4𝜋𝜋 sin𝜃𝜃

𝜆𝜆

𝑛𝑛𝜆𝜆 = 2𝑑𝑑ℎ𝑘𝑘𝑘𝑘 sin𝜃𝜃



Example: diffraction from a crystal – the fcc lattice

Lattice in real space

• A monochromatic (single λ) neutron beam is 
diffracted by a single crystal only if specific 
geometrical conditions are fulfilled

• Useful λ are typically between 0.4 Å and 2.5 Å.

• These conditions can be expressed in several ways:
• Laue’s conditions:   with h, k, and l as integers 
• Bragg’s Law: 
• Ewald’s construction

• Diffraction tells us about:
• The dimensions of the unit cell
• The symmetry of the crystal
• The positions of atoms within the unit cell
• The extent of thermal vibrations of atoms 

in various directions



Relationship between real and reciprocal space



Beam of neutrons or x-rays scattered from planes



Bragg reflections from crystallographic planes 



Centering operations lead to systematic absences

{001} family of planes are systematically absent



Other allowed reflections in fcc lattice



[111] view of the (220) reflection



The Ewald sphere and scattering triangle

The Ewald Sphere
Radius is 2π/λ













Summary
For x-ray and neutron scattering, we are dealing with the scattering of plane 
waves by atoms and nuclei. 

𝐹𝐹 𝑘𝑘 =
1
2𝜋𝜋

�
−∞

∞

𝑓𝑓(𝑥𝑥)𝑒𝑒−i𝑘𝑘𝑘𝑘d𝑥𝑥

𝑄𝑄 =
4𝜋𝜋 sin𝜃𝜃

𝜆𝜆

𝑑𝑑𝜎𝜎
𝑑𝑑Ω

= 𝑟𝑟02�
𝑖𝑖,𝑗𝑗

𝑓𝑓(𝑄𝑄) 2𝑒𝑒−𝑸𝑸�(𝑹𝑹𝒊𝒊−𝑹𝑹𝒋𝒋) 𝑃𝑃(2𝜃𝜃)
𝑑𝑑𝜎𝜎
𝑑𝑑Ω

= �
𝑖𝑖,𝑗𝑗

𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝑒𝑒−𝑸𝑸�(𝑹𝑹𝒊𝒊−𝑹𝑹𝒋𝒋)

𝑛𝑛𝜆𝜆 = 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑 sin𝜃𝜃

neutrons

When Ghkl = Q, Bragg’s Law

x-rays



Questions?
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