

Acknowledgements

Sunil Sinha UC San Diego

Roger Pynn U. Indiana

Jacob Tosado U. Maryland

Acknowledgements

Outline

1. Scattering geometry basics: Plane waves and Fourier transforms

2. Scattering cross sections for neutrons and x-rays

3. Scattering from ensemble of atoms and diffraction

Scattering geometry basics

Plane waves and Fourier transforms

Scattering geometry basics: The sinusoidal wave

A = amplitude

 θ = angle

 ϕ = phase difference

 $\cos\theta = \sin(\theta + \pi/2)$

 $\psi = A\sin(\theta + \phi)$

Scattering geometry basics: The wavenumber k

$$\psi = A\sin(\theta + \phi)$$

k = wavenumber

x = position

 λ = wavelength

$$k = \frac{2\pi}{\lambda}$$

k has SI units of rad m⁻¹

$$\psi = A\sin(kx + \phi)$$

Scattering geometry basics: The travelling wave

Wave moves in x-direction with time, t

$$\psi = A\sin(kx + \phi)$$

 ϕ_0 = initial phase angle

 ϕ = phase after time t

 ω = angular frequency

$$\omega = 2\pi \nu$$

$$\phi = \phi_0 - \omega t$$

$$\psi = A\sin(kx - \omega t + \phi_0)$$

Scattering geometry basics: The plane wave

We define a plane wave: Amplitude in the *z*-direction, Propagates in *y*- and *x*-directions.

$$\vec{r}$$
 = direction of propagation

$$\vec{k}$$
 = wavevector

$$|\vec{k}| = \frac{2\pi}{\lambda}$$

$$\psi = A\sin(\vec{k}\cdot\vec{r} - \omega t + \phi_0)$$

Scattering geometry basics: The traveling plane wave

Plane wave in *x*-direction only

Plane wave in xy-direction

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State

Scattering geometry basics: Complex numbers

- Useful to work with exponential over sinusoidal waves
- Complex numbers allow us to simplify wavefunction equations

i = imaginary number

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\psi = A\sin(\vec{k}\cdot\vec{r} - \omega t + \phi_0)$$

$$\psi = Ae^{i(\vec{k}\cdot\vec{r} - \omega t)}$$

Scattering geometry basics: The Fourier series

- We approximate a periodic structure through a sum of cosines and sines.
- Let f(x) be a function expanded by a Fourier series

$$f(x) \approx a_0 + a_1 \cos(kx) + a_2 \cos(2kx) + a_3 \cos(3kx) + \cdots$$
 Goes to
 $+ b_1 \sin(kx) + b_2 \sin(2kx) + b_3 \sin(3kx) + \cdots$ Goes to
 $f(x) = f(-x)$

n = 1, fundamental harmonic

n = 3, higher harmonics included

The Fourier coefficients

- We write sum more efficiently if we pick the coefficients correctly.
- Now a definition and not approximation.

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inkx}$$

where
$$c_{-n} = c_n^*$$

$$c_n = \frac{1}{\lambda} \int_0^{\lambda} f(x) e^{-\mathrm{i}nkx} \mathrm{d}x$$

- We extend the analysis to a nonperiodic function
- The Fourier coefficients become continuous functions we call F(k)

$$c_n = \frac{1}{\sqrt{2\pi}} F(k) \Delta k$$

The Fourier transform

The limiting case is $\lambda \to \infty$ and $\Delta k \to 0$

- We call F(k) the Fourier transform of f(x), and vice versa
- We can toggle between real space (x) and reciprocal space (k)

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx} dk$$

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

Argand diagram for real and imaginary components

Credit: Dr. David Cowtan, University of York

Fourier optics: Young's double slit experiment

An important Fourier transform: Young's double slit

$$A(x) = \delta\left(x - \frac{d}{2}\right) + \delta\left(x + \frac{d}{2}\right)$$

$$\psi(q) = \psi_0 \left(e^{iqd/2} + e^{-iqd/2} \right)$$

$$\psi(q) = \psi_0 2 \cos\left(\frac{qd}{2}\right)$$

$$q = \frac{2\pi \sin \theta}{\lambda}$$

We don't see the transform, but its amplitude squared

Bragg's law from Fourier transform of a diffraction grating

The phase problem with cats and ducks

Credit: Dr. David Cowtan, University of York

The phase problem, mixing phases and amplitudes

amplitudes from original animal, but phases from opposite animal

The differential cross-section

When neutrons (or X-rays) scattered by the sample, we use σ to represent number scattered particles

$$\mathrm{d}\Omega = \frac{\mathrm{d}S}{r^2}$$

We are after the differential cross-section

 $rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$

Flux of particles from beam and scattering at a solid angle

 Φ = Flux of incoming particles

Number per unit time per unit area (s⁻¹ cm⁻²)

Scattering occurs within the plane by 2θ and out by angle ϕ

We can define the solid angle as $\Delta\Omega$

Incident

particles

The differential and double differential cross section

 Φ = number of incident neutrons per cm² per second σ = total number of neutrons scattered per second / Φ $d\sigma$ number of neutrons scattered per second into $d\Omega$ $d\Omega$ $\Phi d\Omega$ $d^2\sigma$ number of neutrons scattered per second into $d\Omega \& dE$ $d\Omega dE$ $\Phi d\Omega dE$

Plane waves impinge on a single atom

Top-down view of incident plane wave arriving at atomic center.

$$\psi_i = \psi_0 e^{\mathrm{i}kz}$$

The 'aperture' function $f(\lambda,\theta)$ for scattering a plane wave

- We approximate $f(\lambda,\theta)$ as a constant for neutron scattering as a fixed point.
- For x-rays, we cannot make this approximation which affects $f(\lambda,\theta)$

Increasing slit-size means that the scattered wave has more 2θ -dependence Intensity drops off at higher scattering angles

GIFs of plane wave arriving at a slit

The neutron scattering length

- In neutron scattering, the nucleus is a point source.
- $f(\lambda, \theta)$ is therefore a constant
- $f(\lambda, \theta) = b$ where b is known as the scattering length

$$\psi_f = \psi_0 f(\lambda, \theta) \frac{e^{ikx}}{r}$$

- Note that $f(\lambda, \theta)$ and b must have units of length since it is divided by r
- Typical b are in fm or 10^{-15} m
- Can be positive or negative!

The neutron scattering cross section

R

 Φ

<u>dS</u>

Rate = incident flux x cross-sectional area

$$|\psi_0|^2 = \Phi$$

$$\left|\psi_f\right|^2 = \frac{\Phi}{r^2} |f(\lambda, \theta)|^2$$

$$R = \int_{2\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \left| \psi_f \right|^2 dS$$

$$\sigma = 2\pi \int_{2\theta=0}^{n} |f(\lambda, \theta)|^2 \sin 2\theta d2\theta$$

$$\sigma = 4\pi |b|^2$$

Neutron scattering length for hydrogen

- Units given in barns, where 1 barn = 10^{-28} m²
- These are isotope specific and will depend on the orientation of nuclear spin with respect to the neutron
- Example hydrogen vs. deuterium
- H has triplet and singlet from proton

$$b^{+} = 1.085 \times 10^{-14} m$$
$$b^{-} = -4.750 \times 10^{-14} m$$

$$\langle b \rangle = \frac{3}{4}b^+ + \frac{1}{4}b^-$$

$$\langle b \rangle = -0.374 \times 10^{-14} m$$

$$\Delta b = \sqrt{\langle b^2 \rangle - \langle b \rangle^2}$$

$$\Delta b = 2.527 \times 10^{-14} \, m$$

$$b = \langle b \rangle \pm \Delta b$$

Neutron scattering length for deuterium

- Deuterium has a quartet and doublet from proton and neutron in its nucleus
- 2/3 of states are quartet, 1/3 are doublet

$$\langle b \rangle = \frac{2}{3}b^{+} + \frac{1}{3}b^{-}$$

$$\langle b \rangle = 0.668 \times 10^{-14}m$$

$$\langle b^{2} \rangle = \langle b \rangle^{2} + (\Delta b)^{2}$$

$$\Delta b = 0.403 \times 10^{-14}m^{2}$$

$$\langle \sigma \rangle = \sigma_{coh} + \sigma_{inc}$$

(barns)	$\sigma_{coh} = 4\pi \langle b \rangle^2$	$\sigma_{incoh} = 4\pi(\Delta b)^2$
Hydrogen	1.76	80.27
Deuterium	5.59	2.05

The intrinsic cross section for x-rays

- The x-ray is a electromagnetic radiation with the electric field E_{in} oscillating normal to the wave's propagation.
- The electrons in the atomic center will oscillate with the x-ray and re-emit the x-ray with the oscillating field E_{rad}

Thompson scattering length of the electron

The cross section for x-rays

Measured intensity (i.e. number of x - ray photons) α energy/sec

Energy per unit area of beam αE^2 ;

$$\Rightarrow \frac{\text{intensity measured in detector}}{\text{incident intensity}} = \frac{I_{sc}}{I_0} = \frac{\left|E_{rad}\right|^2 R^2 \Delta \Omega}{\left|E_{in}\right|^2 A}$$

differential cross section =
$$\frac{d\sigma}{d\Omega}$$
 = $\frac{\text{number of xrays scattered per sec in }\Delta\Omega}{\text{(number of incident xrays per area)*}\Delta\Omega}$

$$\frac{d\sigma}{d\Omega} = \frac{I_{sc}}{(I_0/A)\Delta\Omega} = \frac{\left|E_{rad}\right|^2 R^2}{\left|E_{in}\right|^2} = r_0^2 \cos^2 \psi$$

The atomic form factor for x-rays

Scattering from multiple atoms

Diffraction from a crystal

The scattering triangle

• k_i is the incident wavevector and k_f is the scattered wavevector

• Useful to work with another vector besides k_i or k_f

 We define Q, as our momentum transfer

Momentum transfer, or Q-space

$$\vec{Q} = \vec{k}_i - \vec{k}_f$$
 or $\vec{Q} = \vec{k}_f - \vec{k}_i$

$$\vec{Q} = \vec{k}_f - \vec{k}_i$$

$$|\vec{k}| = \frac{2\pi}{\lambda}$$

For elastic scattering, no energy transfer

$$|\vec{k}_i| = |\vec{k}_f|$$

$$\frac{|\vec{Q}|}{2} = |\vec{k}| \sin \theta$$

Scattering from an ensemble of atoms

Adding up the waves scattered from different centers

At a scattering center located at \vec{R}_i the incident wave is $e^{i \vec{k}_0 \cdot \vec{R}_i}$

so the scattered wave at
$$\vec{r}$$
 is $\psi_{\text{scat}} = \sum e^{i \vec{k}_0 \cdot \vec{R}_i} \left[\frac{-b_i}{\left| \vec{r} - \vec{R}_i \right|} e^{i \vec{k}' \cdot (\vec{r} - \vec{R}_i)} \right]$

$$\therefore \frac{d\sigma}{d\Omega} = \frac{vdS \left| \psi_{scat} \right|^2}{vd\Omega} = \frac{dS}{d\Omega} \left| b_i e^{i\vec{k}\cdot\vec{r}} \sum_{|\vec{r}-\vec{R}_i|} \frac{1}{|\vec{r}-\vec{R}_i|} e^{i(\vec{k}_0 - \vec{k}\cdot)\vec{R}_i} \right|^2$$

$$\frac{d\sigma}{d\Omega} = \sum_{i,j} b_i b_j e^{i(\vec{k}_0 - \vec{k}') \cdot (\vec{R}_i - \vec{R}_j)} = \sum_{i,j} b_i b_j e^{-i\vec{Q} \cdot (\vec{R}_i - \vec{R}_j)}$$

For x-rays:
$$\frac{d\sigma}{d\Omega} = r_0^2 \sum_{i,j} e^{i(\vec{k}_0 - \vec{k}') \cdot (\vec{R}_i - \vec{R}_j)} \left\{ \frac{1 - \cos^2 2\theta}{2} \right\}$$

A crystal has translational symmetry

Relationship between real and reciprocal space in crystals

fcc a_1 a_2 a_3

Reciprocal Lattice:

$$V_{c} = \vec{a}_{1} \cdot (\vec{a}_{2} \times \vec{a}_{3})$$

$$\vec{a}_{1}^{*} = \frac{2\pi}{V_{c}} \vec{a}_{2} \times \vec{a}_{3}$$

$$\vec{a}_{2}^{*} = \frac{2\pi}{V_{c}} \vec{a}_{3} \times \vec{a}_{1}$$

$$\vec{a}_{3}^{*} = \frac{2\pi}{V_{c}} \vec{a}_{1} \times \vec{a}_{2}$$

$$\vec{a}_{3}^{*} = \frac{2\pi}{V_{c}} \vec{a}_{1} \times \vec{a}_{2}$$

Diffraction and Bragg's law

G_{hkl} is called a reciprocal lattice vector (node denoted hkl)

h, k and l are called Miller indices

- (hkl) describes a set of planes perpendicular to G_{hkl} , separated by G_{hkl}
- {hkl} represents a set of symmetry-related lattice planes λ
- [hkl] describes a crystallographic direction $n\lambda = 2d_{hkl} \sin \theta$
- <hkl> describes a set of symmetry equivalent crystallographic directions

Example: diffraction from a crystal – the fcc lattice

- A monochromatic (single λ) neutron beam is diffracted by a single crystal only if specific geometrical conditions are fulfilled
- Useful λ are typically between 0.4 Å and 2.5 Å.
- These conditions can be expressed in several ways:
 - Laue's conditions: with h, k, and I as integers
 - Bragg's Law:
 - Ewald's construction
- Diffraction tells us about:
 - The dimensions of the unit cell
 - The symmetry of the crystal
 - The positions of atoms within the unit cell
 - The extent of thermal vibrations of atoms in various directions

Lattice in real space

Relationship between real and reciprocal space

Real Space

Reciprocal Space

Beam of neutrons or x-rays scattered from planes

Real Space

Reciprocal Space

Bragg reflections from crystallographic planes

Real Space

Reciprocal Space

Centering operations lead to systematic absences

{001} family of planes are systematically absent

Other allowed reflections in fcc lattice

Real Space

[111] view of the (220) reflection

Real Space

The Ewald sphere and scattering triangle

The Ewald Sphere Radius is $2\pi/\lambda$

Transmitted Beam Bragg Reflection

Incident Beam

Summary

For x-ray and neutron scattering, we are dealing with the scattering of plane waves by atoms and nuclei.

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

neutrons

$$\frac{d\sigma}{d\Omega} = \sum_{i,j} b_i b_j e^{-Q \cdot (R_i - R_j)}$$

x-rays

$$\frac{d\sigma}{d\Omega} = r_0^2 \sum_{i,j} |f(Q)|^2 e^{-\mathbf{Q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} P(2\theta)$$

$$|\vec{Q}| = \frac{4\pi \sin \theta}{\lambda}$$

When
$$\mathbf{G}_{hkl} = \mathbf{Q}$$
, Bragg's Law $n\lambda = 2dhkl\sin\theta$

Questions?

