The Structure Factor: Elastic, Inelastic, and Magnetic

Efrain E. Rodriguez

Chemistry and Biochemistry

University of Maryland, College Park $_{\vec{k}_i}$

θ

Outline

1. The elastic structure factor *S*(*Q*) for neutrons and x-rays

2. Dynamics for the structure factor or $S(Q,\omega)$

3. Magnetic scattering from neutrons

The Structure Factor S(Q)

Elastic scattering

The scattering triangle

- *k_i* is the incident wavevector and *k_f* is the scattered wavevector
- Sometimes those are also written as k_0 or k'

We define *Q* as our momentum transfer

And the differential cross section for elastic scattering

neutrons

- *b_i* is the neutron scattering length of atom
 i at position *R_i*
- *Q* is the momentum transfer

x-rays

$$\frac{d\sigma}{d\Omega} = r_0^2 \sum_{i,j} |f(Q)|^2 e^{-Q \cdot (R_i - R_j)} P(2\theta)$$

- *r*₀ is the Thomson x-ray scattering length
- *f*(*Q*) is the atomic form factor
- $P(2\theta)$ is the polarization factor

Diffraction and Bragg's law

G_{hkl} is called a reciprocal lattice vector (node denoted hkl)

h, k and l are called Miller indices

$$\frac{2\pi n}{d_{hkl}} = \frac{4\pi\sin\theta}{\lambda}$$

 $n\lambda = 2d_{hkl}\sin\theta$

Previously we learned of the Fourier transform

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k) e^{ikx} dk$$

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

Let's explore the structure factor F_{hkl} for crystals

The structure factor for non-Bravais Crystals

Structure factors for neutrons and x-rays

$$\left(\frac{d\sigma}{d\Omega}\right)_{x-ray} = r_0^2 \left[\frac{1+\cos^2 2\theta}{2}\right] N \frac{(2\pi)^3}{V_0} \sum_{hkl} \delta(\vec{Q}-\vec{G}_{hkl}) \left| F_{hkl}(\vec{Q}) \right|^2$$

x-rays add up the form factors multiplied by the phase factor

The Structure Factor S(Q) beyond crystalline matter

 $\frac{d\sigma}{d\Omega} = \langle b \rangle^2 N.S(\vec{Q})$ for an assembly of similar atoms where S

$$S(\vec{Q}) = \frac{1}{N} \left\langle \sum_{i,j} e^{-i\vec{Q}.(\vec{R}_i - \vec{R}_j)} \right\rangle_{\text{ensemble}}$$

If $\rho_{N}(\mathbf{r})$ is the nuclear density function

$$S(\vec{Q}) = \frac{1}{N} \left\langle \left| \int d\vec{r} \cdot e^{-i\vec{Q} \cdot \vec{r}} \rho_N(\vec{r}) \right|^2 \right\rangle$$

S(**Q**) is in square of the Fourier transform of this function

S(Q) as the Fourier transform of pair distribution function g(r)

$$S(\vec{Q}) = 1 + \int d\vec{R} \cdot \{g(\vec{R}) - \vec{\rho}\} \cdot e^{-i\vec{Q}\cdot\vec{R}}$$

where $g(\vec{R}) = \sum_{i \neq 0} \left\langle \delta(\vec{R} - \vec{R}_i + \vec{R}_0) \right\rangle$ is a function of \vec{R} only.

Dynamics and $S(Q, \omega)$

Energy transfer

X-ray & Neutron Scattering Determine a Variety of Structures

biomachines

but what happens when the atoms are moving?

- Can we determine the directions and
- time-dependence of atomic motions?
- Can well tell whether motions are periodic?
- These are the types of questions answered by inelastic neutron & x-ray scattering

Now we are after $S(Q, \omega)$

 $\vec{Q} = \vec{k}_f - \vec{k}_i$ Momentum transfer

 $\hbar\omega = E_i - E_f$ Energy transfer

$$E = \frac{\hbar^2 k^2}{2m_n}$$

Energy of a neutron for certain wavelength

$$\hbar\omega = \frac{\hbar^2}{2m_n} (k_i^2 - k_f^2)$$

For neutrons, energy resolution is not as small as it is for x-rays

Scattering triangle for inelastic processes

Quantity	Relationship	Value at $E = 10 \mathrm{meV}$
Energy	$[\text{meV}] = 2.072k^2[\text{\AA}^{-1}]$	10 meV
Wavelength	λ [Å] = 9.044/ $\sqrt{E[\text{meV}]}$	2.86 Å
Wave vector	$k[\text{\AA}^{-1}] = 2\pi/\lambda[\text{\AA}]$	2.20 Å ⁻¹
Frequency	v[THz] = 0.2418E[meV]	2.418 THz
Wavenumber	$v[cm^{-1}] = v[Hz]/(2.998 \times 10^{10} cm/s)$	$80.65 \mathrm{cm}^{-1}$
Velocity	$v[km/s] = 0.6302 k[Å^{-1}]$	1.38 km/s
Temperature	T[K] = 11.605E[meV]	116.05 K

From Tranquada, Shirane, and Shapiro, "Neutron Scattering from a Triple Axis Spectrometers: Basic Techniques"

Fermi's Golden Rule and the double differential cross section

- Neutrons interact very weakly with matter
- The scattering process will cause a change from a one quantum state to another
- BUT, it will not modify the nature of the states themselves

$$\frac{d^{2}\sigma}{d\Omega_{f}dE_{f}}\Big|_{\lambda_{i}\to\lambda_{f}} = \frac{k_{f}}{k_{i}}\left(\frac{m_{n}}{2\pi\hbar^{2}}\right)^{2}\left[\left\langle k_{f}\lambda_{f}|V|k_{i}\lambda_{i}\right\rangle\right]^{2}\delta(\hbar\omega + E_{i} - E_{f})$$
The two quantum states, initial and final
The interaction operator of neutron with the sample
Delta function, observation for energy transfer at certain hw

$S(Q, \omega)$ and the double differential cross section

$$\frac{d^2\sigma}{d\Omega dE} = N \frac{k_f}{k_i} b^2 S(\vec{Q}, \omega)$$

N = number of nuclei

$$S(\mathbf{Q},\omega) = \frac{1}{2\pi\hbar N} \sum_{ll'} \int_{-\infty}^{\infty} dt \left\langle e^{-i\mathbf{Q}\cdot\mathbf{r}_{l'}(0)} e^{i\mathbf{Q}\cdot\mathbf{r}_{l}(t)} \right\rangle e^{-i\omega t}$$

Inelastic neutron scattering measures atomic motions

$$\left(\frac{d^2\sigma}{d\Omega.dE}\right)_{coh} = b_{coh}^2 \frac{k'}{k} NS(\vec{Q},\omega)$$
$$\left(\frac{d^2\sigma}{d\Omega.dE}\right)_{inc} = b_{inc}^2 \frac{k'}{k} NS_s(\vec{Q},\omega)$$

where

$$S(\vec{Q},\omega) = \frac{1}{2\pi\hbar} \iint G(\vec{r},t) e^{i(\vec{Q}.\vec{r}-\omega t)} d\vec{r} dt \text{ and } S_s(\vec{Q},\omega) = \frac{1}{2\pi\hbar} \iint G_s(\vec{r},t) e^{i(\vec{Q}.\vec{r}-\omega t)} d\vec{r} dt$$

- Inelastic coherent scattering measures *correlated* motions of different atoms
- Inelastic incoherent scattering measures *self-correlations* e.g. diffusion
- These days it is possible to do inelastic scattering using x-rays also.

The pair correlation functions

- <u>Elastic, coherent</u> neutron scattering is proportional to the spatial Fourier Transform of the Pair Correlation Function, G(r) i.e. the probability of finding a particle at position r if there is simultaneously a particle at r=0
- Inelastic coherent neutron scattering is proportional to the space <u>and time</u> Fourier Transforms of the <u>time-dependent</u> pair correlation function function, G(r,t) = probability of finding a particle at position r <u>at time t</u> when there is a particle at r=0 and <u>t=0</u>.
- 3. <u>Inelastic incoherent</u> scattering, the intensity is proportional to the space and time Fourier Transforms of the <u>self-correlation</u> function, $G_s(r,t)$ i.e. the probability of finding a particle at position r at time t when <u>the same</u> particle was at r=0 at t=0

Step 1: construct a frozen wave of atomic density

What happens if we put a "frozen" wave in the chain of atoms so that the atomic positions are $x_p = pa + u \cos kpa$ where p is an integer and u is small?

$$S(Q) = \left| \sum_{p} e^{iQpa} e^{iQu\cos kpa} \right|^{2} \approx \left| \sum_{p} e^{iQpa} (1 + iQu[e^{ikpa} + e^{-ikpa}]) \right|^{2}$$
$$\approx \left| \sum_{p} e^{iQpa} + iQu[e^{i(Q+k)pa} + e^{i(Q-k)pa}] \right|^{2}$$

so that in addition to the Bragg peaks we get weak satellites at $Q = G \pm k$

Step 2: What happens if the wave moves?

- If the wave moves through the chain, the scattering still occurs at wavevectors G + k and G k but now the scattering is inelastic
- In a crystal, the vibration frequency at a given value of q (called the phonon wavevector) is determined by interatomic forces. These frequencies map out the so-called phonon dispersion curves.

A phonon is a quantized lattice vibration

Atomic motions for longitudinal & transverse phonons

Transverse optic and acoustic phonons

$$\vec{R}_{lk} = \vec{R}_{lk}^0 + \vec{e}_s e^{i(\vec{Q}.\vec{R}_l - \omega t)}$$

Inelastic magnetic scattering of neutrons

• In the simplest case, atomic spins in a ferromagnet precess about the direction of mean magnetization

Spin wave animation courtesy of A. Zheludev (ORNL)

Two (of several) ways to do inelastic scattering

Triple-axis spectrometer

CG-4C cold TAS (HFIR)

Time-of-flight spectrometer

ARCS (SNS)

Energy and wavevector transfers accessible to neutron scattering

Neutrons in Condensed Matter Research

Magnetic scattering $S(\mathbf{Q},\omega)$ from M

θ

The neutron and its moment

 γ = gyromagnetic ratio μ_N = nuclear magneton σ = spin operator

Spin amplitude of atom in crystal is pM

g = 2 for spin only
f(Q) magnetic form factor

$$p = \left(\frac{\gamma r_0}{2}\right) gf(\mathbf{Q})$$

The magnetic form factor and structure factor

The magnetic interaction vector

Neutron can have also initial polarization and final polarization

θ

Illustration by Chuck Majkrzak

First, let's look at nuclear scattering once again

More on the Q for nuclear scattering

Accessing the [0 0 L] Reflections

More on the Q for nuclear scattering

Accessing the [0 0 L] Reflections

More on the structure factor for nuclear scattering

Magnetic Scattering

Chuck Majkrzak, c.XXXX

Magnetic Scattering

Crystallographic Unit Cell ≠ Magnetic Unit Cell

Magnetic Scattering

Z Component

Neutrons can be polarized

Two traditional ways to polarize neutrons

Vertical polarization

Uniaxial polarization along Q

Example: Parent superconductor Fe_{1+x}Te

- Fe_{1+x}Te is an antiferromagnetic semiconductor or semimetal depending on value of x.
- x is the amount of interstitial iron between the FeTe sheets
- Structurally similar to the FeAsbased superconductors
- Magnetic properties and magnetic structure also dependent on *x*.
- Becomes superconducting with anion substitution, e.g. FeTe_{1-y}Se_y and FeTe_{1-y}S_y

Vertically polarized neutron diffraction on crystals

Polarized results for Fe_{1+x} Te crystal, x = 12 %

- Two magnetic structures related
- One is a spiral, resolution-limited
- Other is a spin density wave, with broad peak width
- Spectral weight is shifted as transition temperature is approached

Questions?

