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About me
• PhD in Crystallography from Ludwig Maximilians Universität in 

Munich, Germany

• Postdoc at the Australian National University in Canberra, 
Australia

• Postdoc at Michigan State University

• Instrument scientist at Los Alamos National Laboratory

• Diffraction Group Leader at Oak Ridge National Laboratory 
(SNS and HFIR)

• Director Neutron Data Analysis and Visualization at ORNL.

• Distinguished Staff Member and Director Science Initiative 
High Performance Computing, Modeling and Data Analytics.

• Founder of Oak Ridge Computer Science Girls.

NPDF at Lujan Center (LANL)

My car Forschungsreaktor München
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First Neutron Scattering Paper ..

This layer of diffuse scattering took several 
month to collect – 180 x 120 points, ~10 min 
per point
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ORNL is home to two world 
class neutron sources

High Flux Isotope 
Reactor (HFIR) Spallation Neutron Source (SNS)
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Materials research crosses facilities

Opportunities
• Multimodal analysis

• Applied Math. concepts

• Advanced Materials 
Modeling http://neutrons.ornl.gov/

grand-challenge-workshops 
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Exascale
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Diffuse scattering ?

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% vacancies !
Properties might depend on vacancy ordering !! 
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Bragg peaks are blind ..

Bragg scattering: Information about the average 
structure, e.g. average positions, displacement 

parameters and occupancies. 
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Diffuse scattering to the rescue ..

Diffuse scattering: Information about two-body 
correlations, i.e. chemical short-range order or 

local distortions. 
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Inverse Problem aka Crystallographic Phase Problem

Intensities measured only give 
|F|and not the phase
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Analyzing diffuse scattering

• Correlation approach: Expansion of kinematic 
scattering equation in terms of displacement. 
Yields set of two-body correlations.

• Monte Carlo based computer simulations: 
Scientist might “win” solution to the problem ..

• Minimize total energy E: AMC
• Minimize (observed – calculated)2: RMC

• More: “Diffuse Neutron Scattering from 
Crystalline Materials” by Nield and Keen, Oxford 
University Press
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The Automatic Monte Carlo Method

Input:
• Observed diffuse scattering
• Starting structure (e.g. average)
• Model for disorder in terms of interaction energies 

for MC simulation.

Result:
• Set of interaction energies for given model that best 

match the data.
Questions:
• Finding the right model ..
• It is very slow ..

Least Squares

For each parameter in MC model

Run MC

Calculate diffuse scattering

Obtain derivatives
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Numerical estimates
of Differentials

Difference between two calculated 
diffraction patterns

Disorder in Fe3(CO)12 – AMC refinement calculated
Data

[100]

[101]



Opportunities using 
Machine Learning

AI is about how we use and process data.  
It will be, and is, transformative in 
knowledge-based disciplines.  AI will not 
replace scientists, but scientists who use 
AI will replace those who don’t*. 

*Modified from a quote in the Microsoft 
report, “The Future Computed: Artificial 
Intelligence And Its Role In Society”
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Unsupervised Machine Learning – Instrument calibration

POWGEN

Unsupervised clustering algorithm 
for Time focusing and selection of 
groups of detectors with ‘similar’ 
features, e.g. resolution

Work by Yuanpeng Zhang
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(Supervised) Machine Learning
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A machine learning method takes a bunch of data and “learns” 
from it!

Machine Learning

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig

Machine 
Learning 
Method

Machine’s rules for 
determining whether or not 

an image is a pig

Data
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Did it “learn” something?

Label: PigLabel: Not a pig

Training Data
The data we give to the machine 
learning method to learn from

Testing Data
The data we hold out and use to 
check to see if the method actually 
learned something!

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig
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Deep Learning

Label: PigLabel: Not a pig

Training Data
The data we give to the machine 
learning method to learn from

Testing Data
The data we hold out and use to 
check to see if the method actually 
learned something!

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig

Simulated scattering ‘images’

• Small Angle Scattering
• Diffraction
• Diffuse Scattering 
• Quasi Elastic Scattering

Labels

• Relate to model / parameters
• Related to topology
• Good/Bad
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Machine Learning for classification
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XsymNet: 
ML + Exhaustive Symmetry for Phase Transitions
Objectives with XsymNet
– Lower barrier for subtle or complex phase 

transition studies
– Identify SG, lattice parameters, and 

distortions modes from powder diffraction 
data 

Exhaustive Symmetry - ISODISTORT
– Provides symmetry adapted distortion 

modes to model the phase transition 
  

XsymNet Workflow
1) Generate Subgroup tree (SGT) with ISODISTORT 

Method 3
2) Create 250-1000 perturbations of each subgroup 

member by randomly choosing:
Strain Mode Amplitudes

» 1 to 6 modes depending on symmetry
» Random(-0.01, 0.01)

Displacement Mode Amplitudes    
» Gaussian(0, σ = 0.33)

BEQ Intensity – Thermal Parameters
3) Simulate powder patterns of all perturbed structures
4) Train XsymNet to classify powder patterns by 

subgroup symmetry
5) Classify Experimental diffraction dataSl
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XsymNet: ML + Exhaustive Symmetry for Phase Transitions
XsymNet – Convolutional Neural Network
− Accurately classifies subgroup symmetry to 

powder patterns
− Automated Rietveld refinement on top 5 

subgroups → scientist reviews results

Simulated Validation Data
Classification Accuracy 

Metric
α phase β phase

Subgroup
(547 classes)

Top 1 89.2% 87.5%
Top 5 99.5% 98.2%

Confidence 
Rank α phase β phase

1 0176 0152
2 0088 0077
3 0236 0383
4 0544 0169
5 0183 0170

Experimental Data – Bi2Sn2O7

Parent 
Symmetry CIF

ISODISTORT 
Subgroup Tree

XsymNet 
Classification

Rietveld 
Refinement of 

Top 5
Scientist 
Review
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DeepMD: Zhang et al. Phys. Rev. Lett. 120, 143001 (2018)
NequIP: Batzner et al. https://arxiv.org/abs/2101.03164 (2021)

Machine learning force fields (MLFFs) for neutron scattering

DFT calculations to 
generate training 
datasets

VASP/CP2K/etc.

CADES/HPC

Training of MLFFs

DeePMD/NequIP

DGX

Atomistic modeling 
with MLFFs

LAMMPS/i-PI/etc.

Analysis/PC

Neutron scattering 
simulation

OCLIMAX

Analysis/PC

Analysis, 
visualization, and 
interpretation

Mantid/Dave/etc.

Analysis/PC

Task:

Software:

Hardware:

MLFF: Minutes 
on PC

DFT: Days on 
CADES

 Simulation of vibration and INS 
spectra of complex materials 10,000 speedup and linear 

scaling with size, while 
inheriting spectroscopic 
accuracy from DFT:

• Disordered, defective, or 
distorted crystals

• Heterogeneous structure 
(interface, boundary, guest-
host systems)

• Long-range correlations
• Slow dynamics and rare 

events
• Nuclear quantum effects

 Nuclear quantum effects in 
spectroscopy

Linker, T.M. et al. Nat Commun 15, 3911 (2024).
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https://arxiv.org/abs/2101.03164
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Direct prediction of powder S(Q,E)

Latent 
space

Simulated 
S(Q,E)

Reconstructed 
S(Q,E)

Training cycle 1

Crystal 
structure

Latent 
space

Training cycle 2

Application cycle

Predicted 
S(Q,E)

Crystal 
structure

Latent 
space

300x300

50

Cheng, Y., et al. Mach. Learn.: Sci. Technol. 4, 015010 (2023).
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Experiment Steering
•ESPD Team:
•Ray Gregory, Kaz Gofron, Bogdan Vacaliuc, Zach Thurman, Gregory 
Cage, Gavin Wiggins, Cody Stiner, Lance Drane, Jesse McGaha, 
Andrew Ayres, Robert Smith, Marshall McDonnell

•ESPD Advisors:
•Greg Watson, Addi Malviya Thakur, Yuanpeng Zhang, Jue Liu

•Other ORNL Neutrons Collaborators:
•Mathieu Doucet, Fahima Islam, Thomas Huegle, Sudip Seal, Maksudul 
Alam, Garrett Granroth, Matt Tucker, Anibal “Timmy” Ramirez Cuesta,  
Emily R Van Auken, Luke Daemen

•Other ORNL INTERSECT Collaborators:
•Stephen DeWitt, Ankit Shrivastava, Paul Laiu, Craig Bridges

•NIST Collaborators: 
•Austin McDannald, Gilad Kusne, William Ratcliff

•NSDF Collaborators:
•Michela Taufer, Jack Marquez, Kin Hong NG, Valerio Pascucci, Giorgio 
Scorzelli, Amy Gooch
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PI: Marshall McDonnell

Research 
Objective

Steer experiment for exploring alpha-Fe2O3 
magnetic phase transition leveraging 
multiple autonomous science software 
platforms

Scientific 
Achievement

• Steered NOMAD experiment using 
External Instrument Control 
(EIC), Interconnected Science Ecosystem 
(INTERSECT), Distributed INTERSECT 
Active Learning for Experimental 
Design (DIALED), and National Science 
Data Fabric (NSDF)

• Measured bulk Fe2O3, Fe2O3 + NIST 
silicon for calibrant, and 100nm 200nm 
Fe2O3 nanoparticles using Gaussian 
Process in DIALED

• Measured bulk Fe2O3 using NIST team 
ANDiE algorithm in DIALED

Significance 
and Impact

Commissioned reusable experiment steering 
for other neutron scattering instruments 
across ORNL

ESPD Highlight: NOMAD experiment steering for αlpha-Fe2O3

Team @ NOMAD and Fe2O3 Phase Transition
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Autonomous Phase Transition Exploration of Fe2O3 on NOMAD @ SNS

● Fe2O3
● Fe2O3 + calibrant
● Fe2O3 nano

Image from Jiang, Z., Liu, Q., Roberts, A. P., Dekkers, M. J., Barrón, V., Torrent, J., & Li, S. (2022). The magnetic and color reflectance 
properties of hematite: From Earth to Mars. Reviews of Geophysics, 60, e2020RG000698. https://doi.org/10.1029/2020RG000698

https://doi.org/10.1029/2020RG000698
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ORNL INTERSECTNOMAD at SNS

Recent: Autonomous Phase Transition Exploration on NOMAD @ SNS

NSDF INTERSECT

EIC

Bayesian ANDiE

Peak 
Analysis



Analysis and feature detection in large 
volumes of diffuse x-ray and neutron 
scattering from complex materials

Thomas Proffen, Ray Osborn, Rick Archibald, Stuart 
Campbell, Ian Foster, Scott Klasky, Tashin Kurc, Dave 
Pugmire,  Michael Reuter, Galen Shipman, Chad Steed, 
Chris Symons, Ross Whitfield, Doug Fuller, Guru Kora, 
Mike Wilde, Justin Wozniak

Facilities/Resources
SNS, APS, ALCF; OLCF; and CADES at ORNL
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DOE Science Data Pilot Project
• Diffuse scattering contains information about disorder in materials which is 

critical to understand function.
• Novel approach using pattern recognition and machine learning.
• Aligned with science needs of CORELLI and TOPAZ.

Atlas of Optical Transforms, Harburn, Taylor 
and Welberry (1975)

Compare to observed 
diffuse scattering

Disordered real 
space model
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High Level Demonstration Workflow

SNS – TOPAZ
Neutron Scattering

Feature detection “Streaks” in 
Diffuse scattering data 

APS - X-ray 
Scattering coming 
soon

Diffuse scattering 
simulations over 
parameter space  

Knowledge base of 
experiments and 
simulations

Classification of 
“streaks” into 

candidate 
stacking faults 

Scientific 
visualization and 
visual analytics 

interface presenting 
detected features 

and candidate 
stacking faults 

based on classifiers 

Data sharing and 
catalog of results



32

Challenges

• What are the correct labels?

• Sparse data.

• Data management and ‘ML friendly’ metadata.

• Correct normalization for scientific data.



33 https://journals.iucr.org/special_issues/2024/ML/ 

https://journals.iucr.org/special_issues/2024/ML/


34

Visit ORNL virtually

https://www.ornl.gov/virtual-tour 

https://www.ornl.gov/virtual-tour
https://www.ornl.gov/virtual-tour
https://www.ornl.gov/virtual-tour
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http://neutrons.ornl.gov

Thank you

Thomas Proffen
tproffen@ornl.gov 
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