Overview of the Nanoscale Ordered Material Diffractometer (NOMAD)

INSTRUMENT TEAM

Jörg Neuefeind (neuefeindjc@ornl.gov)

Mikhail Feygenson (feygensonm@ornl.gov)

Katherine Page (pagekl@ornl.gov)

John Carruth (carruthjw@ornl.gov)

Instrument paper: NIM-B 287 (2012) 68

http://www.sciencedirect.com/science/article/pii/S0168583X12003291

What is NOMAD?

- NOMAD is a diffractometer using a large bandwidth of neutron energies and extensive detector coverage to do structural determinations of local order in crystalline and amorphous materials.
- NOMAD was designed for studies of a large variety of samples ranging from liquids, solutions, glasses, polymers and nanostructured materials to longrange ordered crystals.
- NOMAD gives an access to high-resolution pair distribution functions (PDF), small-contrast isotope substitution experiments, small sample sizes, parametric studies and in-situ diffraction.

Currently, 50 out of 99 packs with eight ³He linear position sensitive detectors are installed. 51200 pixels are grouped into six "banks".

NOMAD (as seen from the sample position)

XIXIAM

the filles

Resolution Ad/d

Bank	⟨2 <i>θ</i> ⟩ /degree	∆d/d FWHM	approx. d-range /Å (60Hz*)	
1	15	0.029	0.5-13	- 1/6
2	31	0.019	0.3-6.5	0.04 2 3 0.02 1 1 1 1 1 1 1 1 1 1
3	67	0.0137	0.3-3	0.00
4	122	0.0069	0.2-1.9	Measured pixel by pixel resolution (FWHM) vs. scattering angle 20
5	154	0.0036	0.2-1.5	*30 Hz operation roughly doubles the d-range
6	7	0.039	0.5-28	to longer d. Some sample environments (cryostat /furnace) restrict the accessible
5 Managed by	y UT-Battelle			o range.

National Laboratory

Sample environment

Standard

• Sample translation stage combined with Cobra temperature controller.

http://sns.gov/equipment/equip-detail.cfm?recordID=OSE-001&facility=All

Orange Cryostat (2- 300K)

http://sns.gov/equipment/equip-detail.cfm?recordID=CRYO-004&facility=SNS

• ILL furnace (300K- 1400K)

http://sns.gov/equipment/equip-detail.cfm?recordID=HOT-001&facility=SNS

Special requirements

Aerodynamic levitator (800 -3500K + room temperature)

http://sns.gov/equipment/equip-detail.cfm?recordID=HOT-018&facility=SNS

High voltage set-up (10kV)

http://sns.gov/equipment/equip-detail.cfm?recordID=AE-013&facility=SNS

Sample size considerations

- Neutron sized samples = synchrotron sized data acquisition times
- Synchrotron sized samples = neutron sized data acquisition times

Rule of thumb: Fill a 2mm dia. capillary 2 cm high (~60mm³), if 100K< T <500K (cryostream/Cobra), fill 6mm dia. vanadium can 2 cm high (0.5cm³) for cryostat/furnace. Count for 1h per sample and temperature.

Diffraction from a very strong scatterer (0.6 g diamond) obtained in 1 second.

Diamond powder (backscattering)

20 min data on glassy SiO₂

National Laboratory

for the Department of Energy

Sample with hydrogen

 \Rightarrow H is bad, but not completely excluded. If you can, substitute for D and the data quality will be better. It will save you a lot of time on data analysis.