Introduction to Inelastic X-Ray Scattering

Jason N. Hancock University of Connecticut jason.hancock@uconn.edu

Neutron and X-ray Scattering School Argonne National Laboratory, Argonne, IL

Outline

- Introductions
- Dispersion relations in materials physics
- Elastic waves and classification of phonons
- Phonon inelastic X-ray scattering examples
- Resonance phenomena in multi-electron atoms
- Resonant inelastic X-ray scattering examples

UConn Condensed Matter Physics

Alexander Balatsky Theoretical physics Superconductivity Quantum materials

Elena Dormidontova Soft Matter Theory

Niloy Dutta Photonics Applied physics

Gayanath Fernando Theoretical physics Electronic structure Quantum materials

Menka Jain Thin film synthesis

Boris Sinkovic Thin films synthesis Electron spectroscopy

Lea F. Dos Santos Theoretical physics Quantum chaos

Pavel Volkov Materials theory Twistronics

Plus strong connections with: AMO group, UConn Institute for Materials Science, New UConn Tech Park

My PhD research does/will likely use...

My PhD research does/will likely regard...

Mostly structural studies

Spectroscopy and electronic structure

Advanced imaging

Still figuring it out

None of these

Particle-in-a-box: the simplest quantum problem

Dispersion relation

Particle in a box to the band theory of solids

Many electron states

Uncorrelated electron systems

Electron-electron interactions do not dominate material behavior

Well-established theoretical framework describes most properties of semiconductors (Si,Ge,GaAs), good metals (Cu,Ag,Al,Au)

Correlated electron systems

Electron-electron interactions dominate material behavior

Often includes magnetism, more exotic behavior

Theoretical treatment is very limited

High potential for applications and interesting basic science

Collective excitations in materials

- "Fields" of spin, charge, nuclear displacement self organize according to interactions and confining potential
- Disturbances in the pattern form excited states relevant to material behavior

Inelastic X-ray scattering can probe many different fundamental excitations

Elastic waves

• Materials can distort in wavelike patterns, typical of transverse waves on a string

A common wave equation:

 $\frac{\partial^2 f}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$

 2π

permits solutions of the form: f(x - vt)

All waves move at the same speed, regardless of wavelength

(Wave speed=slope)

Dispersion relation for waves on a string

Linear dispersion also found in: X-rays and light Sound at long wavelengths Shallow water waves Gravitational waves

What about atomic scale disturbances?

Consider monatomic 1D chain and wavelengths approaching lattice parameter a

 $_{3a}\mbox{Lattice}$ waves are periodic in momentum, just like the lattice

Quantum mechanics applied to lattice vibrations lead to the concept of "phonons"

Loosely, each k value refers to a different "phonon mode"

How do X-rays scatter from atoms?

 $\vec{Q} = \vec{k}_f - \vec{k}_i$ is the momentum delivered to the atom

 Off resonance, an X-ray can cause an atom to recoil in a momentum conserving collision

How do X-rays scatter from crystals?

 $\vec{Q} = \vec{k}_f - \vec{k}_i$ is the momentum delivered to the crystal

$$\left|F_{1p}(\tau,\mathbf{q}j)\right|^{2} = \frac{1}{\omega_{\mathbf{q}j}} \left|\sum_{d} \frac{f_{d}(\mathbf{Q})}{\sqrt{2M_{d}}} e^{-W_{d}} \mathbf{Q} \cdot \mathbf{e}_{\mathbf{q}jd} e^{i\mathbf{Q} \cdot \mathbf{r}_{d}}\right|^{2}$$

 Probability of scattering off of a given phonon is strong when the displacements are along Q

Polarization of phonons

• Atoms can move in three directions, different dispersion for different directions

Measuring acoustic phonons with IXS

Transverse scan

(3,3,0)

- Q sets the direction of atomic displacements
- Polarization of atomic displacement wrt reduced q can be changed by scanning different directions

What about more complicated unit cells?

Phonons throughout the Brillouin zone

Gonze, et al, Z. Krist. 220 (2005) 458

Raman=inelastic light scattering

Discovered 1928 Nobel 1930

Strong limitation: momentum of light is very small

https://www.nanophoton.net/

Energy transfer and Raman shift

How can we disperse X-rays according to energy/wavelength?

Prism? Index of Refraction = (1-delta)-i(beta) delta (dash) beta (solid) 10^{4} Photon Energy (eV)

Inefficient Index changes too small to be effective

If feature sizes can be on order wavelength

Good choice for lasers up to

Diffracting X-rays crystals

Si

Ge

LiNbO₃

- Collecting inelastically scattered photons requires high quality, large, diced, bent crystal analyzers
- APS is a world leader in analyzer development

High Energy Resolution Inelastic X-ray Scattering

- Sector 30, Advanced Photon Source, Argonne National Lab
- 23,724 eV incident energy
- <1 meV incident bandwidth
- Resolving power $E_i/\Delta E_i = 2 \times 10^7$
- 9 analyzers sample, 9 momenta transfers simultaneously, 9m arm
- 1.5 meV energy resolution
- 20µm x 5µm spot size
- Measures energy and momentum distribution of lattice vibrations $S(\vec{q},\omega)$

Kohn anomaly and elastic softening in body-centered cubic molybdenum at high pressure

Sample and environment

Pressure-dependent dispersion

PHYSICAL REVIEW B 78, 104121 (2008)

Central peak and narrow component in x-ray scattering measurements near the displacive phase transition in SrTiO₃

• Structural transitions can be described as the "freezing" of a phonon mode

High temperature structure

Tetragonal Sr Ti

Low temperature structure

PHYSICAL REVIEW MATERIALS 1, 070603(R) (2017)

Negative thermal expansion near two structural quantum phase transitions

Journal of the Ceramic Society of Japan 127(6):404-408 (2019)

Non-phonon IXS-active excitations

PRL 99, 026401 (2007)

 Different d electron orbitals have different energy when placed in a crystal

Nonresonant Inelastic X-Ray Scattering and Energy-Resolved Wannier Function Investigation of *d-d* Excitations in NiO and CoO

PHYSICAL REVIEW LETTERS

week ending 13 JULY 2007

• Gives rise to "crystal field excitations"

Non-phonon IXS-active excitations

Hydrogen Emission Spectrum

Balmer series

$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$
Schrodinger equation for 1/r potential: $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi$
Hydrogen wavefunctions: $\psi_{nlm} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3}} e^{-r/na} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right) Y_l^m(\theta, \phi)$
Energy levels: $E_n = -\left[\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2\right] \frac{1}{n^2}$
Bohr radius: $a \equiv \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.529 \times 10^{-10}$ m

Energy (eV)

Absorption Coefficient (μm^{-1})

0

0.4

0.3

0.2

0.1

0.0

6500

RIXS - Resonant IXS

- Like IXS, but uses a resonant edge to enhance electronic signal
- Can excite electrons and things they couple to (phonons, magnons, excitons)
- Understanding resonances topic of next talk, some intro here

Kramers-
leisenberg:
$$\frac{d^2\sigma}{d\Omega_{k'}d(\hbar\omega'_k)} = \frac{\omega'_k}{\omega_k} \sum_{|f\rangle} \left| \sum_{|n\rangle} \frac{\langle f|T^{\dagger}|n\rangle\langle n|T|i\rangle}{E_i - E_n + \hbar\omega_k + i\frac{\Gamma_n}{2}} \right|^2 \delta(E_i - E_f + \hbar\omega_k - \hbar\omega'_k)$$

X-ray edge absorption... and RIXS

Copper K (example)

How do X-rays scatter from atoms...when they are tuned to an atomic resonance?

is the momentum delivered to the atom

 $\vec{Q} = \vec{k}_f - \vec{k}_i$

 On resonance, an X-ray can cause an atom to recoil *and* become electronically or magnetically excited in a momentum conserving collision

Mott gap dispersion in high-Tc cuprates

Magnetically-ordered states

C = antiferromagnetic

D = ferrimagnetic

- Magnetic interactions between magnetic ions can lead to ordered states
- Disturbance in order forms "spin waves" or "magnons"
- Like sound, magnons carry momentum and energy
- Dispersion relation is important

Magnetic excitations via RIXS

 2008 Cu K edge RIXS showed bi-magnon feature, consistent with Raman q=0 result

 2009 Cu L edge (soft X-ray) RIXS showed a shoulder of elastic line consistent with *single*-magnon excitation

Braicovich, Ghiringhelli, et al, PRL 102 167401 (2009)

Extended interactions in a Mott insulator Sr₂CuO₂Cl₂

Evolutio

Iron pnictide superconductors and Correlated 5d systems

1)

BaFe₂As₂

Srlr₂O₄

Kim, et al, Phys. Rev. Lett. 108, 177003 (2012)

Other RIXS highlights

- Orbiton dispersion
- Phonons excited through core hole intermediates
- Spin-2 (triplon) excitations
- Incipient CDW effect at Tc in YBCO
- Paramagnon fluctuations in doped cuprates

-0.25

2.5

2.0 Energy

1.5

1.10

1.05

1.00

0.95 0.25 0.30 0.35

в

q_{//} (r. l. u.)

d)

E_i = 452.0 eV

T = 13 K

130

200

150

YTiO,

(a)

200

Future technique directions with RIXS

Thank you!

jason.hancock@uconn.edu