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ORNL is home to two world 
class neutron sources

High Flux Isotope 
Reactor (HFIR) Spallation Neutron Source (SNS)
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Materials research crosses facilities

Opportunities
• Multimodal analysis

• Applied Math. concepts

• Advanced Materials 
Modeling http://neutrons.ornl.gov/

grand-challenge-workshops
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Diffuse scattering ?

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% vacancies !
Properties might depend on vacancy ordering !!
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Bragg peaks are blind ..

Bragg scattering: Information about the 
average structure, e.g. average positions, 

displacement parameters and 
occupancies.
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Diffuse scattering to the rescue ..

Diffuse scattering: Information about two-body 
correlations, i.e. chemical short-range order or 

local distortions.
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Inverse Problem aka Crystallographic Phase Problem

Intensities measured only 
give |F|and not the phase
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Analyzing diffuse scattering

• Correlation approach: Expansion of 
kinematic scattering equation in terms of 
displacement. Yields set of two-body 
correlations.

• Monte Carlo based computer simulations: 
Scientist might “win” solution to the problem 
..

– Minimize total energy E: AMC
– Minimize (observed – calculated)2: RMC

• More: “Diffuse Neutron Scattering from 
Crystalline Materials” by Nield and Keen, 
Oxford University Press
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The Automatic Monte Carlo Method

Input:
• Observed diffuse scattering

• Starting structure (e.g. average)

• Model for disorder in terms of interaction 
energies for MC simulation.

Result:
• Set of interaction energies for given model 

that best match the data.

Questions:

• Finding the right model ..

• It is very slow ..

Least Squares

For each parameter in MC model

Run MC

Calculate diffuse scattering

Obtain derivatives
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Numerical estimates
of Differentials

Difference between two 
calculated diffraction patterns

Disorder in Fe3(CO)12 – AMC refinement calculated
Data

[100]

[101]



Opportunities using 
Machine Learning

AI is about how we use and 
process data.  It will be, and 
is, transformative in 
knowledge-based 
disciplines.  AI will not 
replace scientists, but 
scientists who use AI will 
replace those who don’t*. 
*Modified from a quote in the Microsoft 
report, “The Future Computed: Artificial 
Intelligence And Its Role In Society”



MACHINE LEARNING



A machine learning method takes a bunch of data and “learns” from it!

MACHINE LEARNING

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig

Machine 
Learning 
Method

Machine’s rules for 
determining whether or not 

an image is a pig

Data



DID IT “LEARN” SOMETHING?

Label: PigLabel: Not a pig

Training Data
The data we give to the machine 
learning method to learn from

Testing Data
The data we hold out and use to 
check to see if the method actually 
learned something!

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig



DEEP LEARNING

Label: PigLabel: Not a pig

Training Data
The data we give to the machine 
learning method to learn from

Testing Data
The data we hold out and use to 
check to see if the method actually 
learned something!

Label: PigLabel: Not a pig

Label: Pig Label: Not a pig

Simulated scattering ‘images’

• Small Angle Scattering
• Diffraction
• Diffuse Scattering 
• Quasi Elastic Scattering

Labels

• Relate to model / parameters
• Related to topology
• Good/Bad
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Machine Learning for classification
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AI accelerating neutron scattering research

Automatic model selection 
for neutron reflectivity

Machine learning insight 
into spin ice

• Model Hamiltonians for spin 
ice were selected from 
experimental neutron 
scattering data.

• Approach used machine 
learning and training data 
were calculated using 
forward models.

Future opportunities

• Machine learning 
generated meta-data 
enabling automation (e.g. 
marking data from 
misaligned samples)

• Feature identification in 
elastic and inelastic neuron 
scattering data allowing 
automation and selecting 
modeling approaches

(a) Scattering data and (b) simulated 
data of Dy2Ti2O7 [arXiv:1906.11275]

• Prototype allows to 
automatically detect and 
refine multi-layer models 
from experimental neutron 
reflectivity data.

• Training data set was 
calculated using refl1d for 1, 
2- and 3-layer models. 

• Future:
– Expand to more models and 

deploy for users.
– Integrate in automatic 

reduction and (initial) analysis 
workflow.

https://arxiv.org/abs/1906.11275


Analysis and feature detection in large 
volumes of diffuse x-ray and neutron 
scattering from complex materials

Thomas Proffen, Ray Osborn, Rick Archibald, Stuart 
Campbell, Ian Foster, Scott Klasky, Tashin Kurc, Dave 
Pugmire,  Michael Reuter, Galen Shipman, Chad 
Steed, Chris Symons, Ross Whitfield, Doug Fuller, Guru 
Kora, Mike Wilde, Justin Wozniak

Facilities/Resources
SNS, APS, ALCF; OLCF; and CADES at ORNL
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DOE Science Data Pilot Project
• Diffuse scattering contains information about disorder in materials which 

is critical to understand function.
• Novel approach using pattern recognition and machine learning.
• Aligned with science needs of CORELLI and TOPAZ.

Atlas of Optical Transforms, Harburn, Taylor 
and Welberry (1975)

Compare to observed 
diffuse scattering

Disordered real 
space model
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High Level Demonstration Workflow

SNS – TOPAZ
Neutron Scattering

Feature detection “Streaks” in 
Diffuse scattering data 

APS - X-ray 
Scattering coming 
soon

Diffuse scattering 
simulations over 
parameter space  

Knowledge base of 
experiments and 
simulations

Classification of 
“streaks” into 

candidate stacking 
faults 

Scientific 
visualization and 
visual analytics 

interface presenting 
detected features 

and candidate 
stacking faults 

based on classifiers 

Data sharing and 
catalog of results
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Challenges

• What are the correct labels?

• Sparse data.

• Data management and ‘ML friendly’ metadata.

• Correct normalization for scientific data.



Machine Learning 
for Inverse 
Problems

Cristina Garcia Cardona (LANL), Ramakrishnan 
Kannan (ORNL), Thomas Proffen (ORNL), Travis 
Johnston (ORNL), Katherine Page (ORNL/UTK), David 
Womble (ORNL), Sudip K Seal (ORNL, POC)



0

0.2

0.4

0.6

0.8

1

1.2

2000 4000 6000 8000 10000 12000 14000 16000

Diffraction
Data

Atomic structure Refine
structural

Parameters
(optional)

Predict model 
from ExaLearn
trained model

Create 
structural 

model

Refine
structural

parameters

Scientist input

Current workflow ExaLearn workflow



2424

http://neutrons.ornl.gov

Thank you

Thomas Proffen
tproffen@ornl.gov 
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