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o high-pressure in the Universe

o significance of high-pressure research

o overview of pressure-generating devices

o high-pressure experiments and brilliance

o @ very exotic world: some recent scientific highlights

- challenges of non-ambient experiments

- monochromatic high-pressure micro-diffraction and
micro diffraction mapping of heterogenous samples: an
example of problems and solutions in high pressure
experiments



Pressure in the universe

10-17 Pa, intergalactic voids

~10-7Pa, APS storage ring

Fe + Ni +
‘light elements’

~ 5 GPa graphite turns to diamond o
~ 10 GPa, at ambient T, He, H, Ne are solids ';3;& 64Gpa
- ~360 GPa Earth’s center |

- 500 GPa, hydrogen becomes a stiff metal

Duffy, Nature, 2011

- 1013 Pa Jupiter interior

Reflective H

Transparent H,

- 1076 Pa Sun’s core

)

A

- 1034 Pa inside neutron star

415GPa B

495 GPa C

Metallic hydrogen
Dias & Silvera, Science, 2017



Geo & planetary science

The composition, structure and evolution of the environment we live in
depends on processes occurring deep inside the Earth. For instance,

- the atmosphere and the oceans (at least in part) were originated from the
planet outgassing;

- ores formation in most cases occur at some depths;
- volcanoes and earthquakes can originate at great depths.
Large and small impacts are critical to planets formation and history.

Extraterrestrial planets differ in whole composition and size but also In
differentiation history. In order to understand their nature we must learn what
phases might constitute their interiors.



National Security

“As a core part of the NNSA’'s advanced science and technology portfolio, the Office
of ICF is working to produce thermonuclear burn conditions in the laboratory, to
develop laboratory capabilities that will create and measure extreme conditions of
temperature, pressure, and radiation of relevance to nuclear weapons, and to
conduct weapons-related research in these environments.” (nnsa.energy.gov)

NNSA supports large scale facilities where high-pressure research is being
conducted and scientific opportunities are available.

Z-pinch machine, SNL

NIF’'s 192 laser beams routinely creating temperatures and pressures
similar to those that exist only in the cores of stars and giant planets and
inside nuclear weapons.https://lasers.linl.gov/about

Z has so much energy that it can melt diamond, and in melting diamond
to a puddle, Z scientists have been able to understand the material’s
various states - from solid to liquid, with a mixed state in-between.
http://www.sandia.gov/z-machine/



http://nnsa.energy.gov
https://lasers.llnl.gov/about

Material science

Pressure is a powerful tool to change properties and design materials.
Areas of research include:

* superhard materials,
* superconductors & other materials with interesting electronic properties,
* high-energy-density materials and hydrogen storage,

* nuclear waste storage.

Biology and medicine

* pressure aided synthesis of pharmaceuticals
* food preservation

* |ife at high pressure



Fundamental Physics & Chemistry

Understanding the behavior of matter at extreme conditions
broadens and deepens our fundamental physics and chemistry
knowledge. By applying pressure we can add extremely high
energy to a system, dramatically aftecting all physical and chemical
properties. High pressure studies include:

* equilibrium phase diagrams and metastability,

» deformation (from atomic scale to bulk) in hydrostatic and non-
hydrostatic conditions,

* electrical and magnetic properties,

* bonding and chemistry at extremes conditions.



High Pressure generation: common devices

Static

ethe diamond anvil cell, with 50+ years of history is by far the
most common device

elarge volume presses

Recio et al. 2016
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The diamond anvil cell

the sample chamber betwee

00000

The DAC is a small device that can generate pressures up to 1000 GPa.
Temperatures range from few degrees K to several thousands degrees K

It Is the most versatile instrument, with a range of designs that better suite
experimental conditions and probing techniques.

Several technigques are compatible exclusively with DACs.



The diamond anvil cell, recent breakthroughs

Sealing

SCTEWS Pt“m” 100
80 —
N T - Backlllﬂg - Present design of DAC
S D e plate 5 60 |-
Sample of about @ 3 pm g 40 _ |
\ Dlamﬂnd >< I Conventional DAC ]
Allgnmenl M
O o o1 T
\ Sample volume (mm?)
h-BN Collimator
Record pressures were achieved Much increased sample volume in
by using a second stage nano DACs were developed for neutron
diamond semi balls between two experiments.

diamond anvils. |
Dubrovinskaya et al, Sci. Adv., 2016 Boehler et al. High Pressure Res., 2013



The multianvil press

These large devices can generate pressures of up to ~ 100 GPa.
Temperatures range from ambient to ~2000 K.

The sample is typically few mm large.

These presses are very suitable to high P-T studies, deformation of

polycrystalline samples, synthesis of recoverable phases and studies of
multiphase materials.




Paris-Edinburgh cell

The Paris-Edinburgh cell is the most common highP device at neutron sources
as it provides relatively large samples in a relatively small device.

Max P ~ 40 GPa, max T ~ 2000 K

== -6

Encapsulated gasket

Type V3b Paris-Edinburgh Cell Standard anvil & gasket configuration

Marshall & Francis, J. Appl. Cryst.,2001

https:/neutrons.ornl.gov/snap/sample


https://neutrons.ornl.gov/snap/sample

Shock compression

Shock compression can achieve
the highest P-T conditions

Samples are relatively large but
very short-lived

Both guns and laser driven
shock devices will be
available at the APS,
allowing for a broad range
of pressure, temperature
and strain rate to be
achieved.

gas gun,
DCS, APS



High pressure & brilliant radiation

Samples under high pressure are:

e very small and/or,

® enclosed Iin bulky devices, access to samples is
limited to semitransparent windows,

® In some case very short lived,

e often very complex (pressure gradients,
multiphase, poorly crystallized)



High pressure & brilliant radiation

In addition to the general advantage of brilliant source, probing high-pressure
samples in situ requires

e high flux for the beam to penetrate the device and for scattered radiation
to travel out, obtain a reasonable signal from small samples or to collect data
INn short time,

e highly focused beam in order to reduce parasitic scattering,

e tunable energy allowing to play with the absorption of device components
and optimize resolution (diffraction).

At high pressure you need all the brilliance you can get!!



High Pressure at the APS
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The highest T superconductivity
was measured at ~ 200 GPa in
hydrogen sulphide

Drozdov et al., Nature, 2015

nuclear resonant scattering
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The finding was later further confirmed
via nuclear resonant scattering

Trojan et al.,

Science, 2016



“> Noble chemistry & electride
powder x-ray diffraction

Na-He at 140 GPa
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Prediction and synthesis of a stable compound of helium and sodium at high pressure.
Dong et al., Nature Chemistry, 2017
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“> Shocked silicon powder and crystals
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Turneaure et al., PRL 117, 045502, 2016
Time resolved shock compression of silicon allows observing the high-
pressure phase at these conditions for the first time and study the reciprocal
orientation of the crystals before and during the shock.



“# Iron oxide, the latest

a ) Hu et al., Nature, 2016
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“» Synthesis of Na-H compounds

X-ray powder diffraction
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Struzhkin et al. Nature Communications, 2016

Two hydrogen-rich compounds, NaH3 and NaH7 were synthesized at
high P-T. The characterization was performed via XKD and Raman
analysis in combination with theoretical calculations.



Peculiarities of high-pressure data

Most synchrotron and neutron technigues can be applied to high pressure
studies, but In most cases the data gquality is decreased and the analysis is
not straightforward.

Data are affected by limited access, absorption and scattering of the
windows.

Samples might be non ideal in thickness and size, show severe strain
range, coexistence of polymorphs and reacted and unreacted material.

e data analysis might require corrections and tailored manipulation,

* often the data interpretation is not unique, hence multiple techniques and
theoretical calculations are necessary to solve a problem.

Synchrotron and neutron high-pressure techniques are very rapidly
evolving allowing for new and better science to be performed.

This Is indeed a very good time for high-pressure science as new
experimental opportunities are becoming available!



XAFS, challenges of DAC measurements

DAC experiments are performed in different geometries:
- radial, sample thickness and uniformity are hardly ideal
axial, glitches appear in the spectra due to diamond diffraction
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Monochromatic single-crystal micro diffraction in the DAC

WIDE ACCESS DAC & diamonds

® Great efforts are made to obtain relatively high quality crystals, these
include use of soft pressure-transmitting media and/or annealing.

® \\Vide access conical anvils (Boehler & De Hansetters 2004) and/or
semitransparent seats are critical for high-pressure crystallography.



Reciprocal space access

The DAC body determine large blind regions

* rotation range bounded by upstream cell
opening

» diffracted beams are confined to a cone
defined by the downstream opening

Merrill and Bassett, Rev Sci Inst, 1974 example of diffraction peaks distribution
in the reciprocal space



Partial and overlapping peaks

Some peaks are discarded due to overlapping with parasitic
scattering




Glitches caused by diamond diffraction

* the incident beam as well as the beam diffracted by the sample are
attenuated by diamond diffraction events

 the intensity reduction is significant
« sample peaks are randomly affected by this problem

* it is possible but not practical to correct for diamond diffraction glitches

the effect is minimized by collecting highly redundant datasets
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Variable illuminated crystal volume
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Variations of I*Vcr: Empirical correction

® |[n case of crystals much larger than the beam, the volume of crystal in
the beam shows a simple variation (cosw)

® An empirical correction can be obtained for high symmetry structures

® After eventual corrections for DAC absorption, we can study the w-
dependence of the relative difference between the intensity of a retlection
with respect to the average of the set of equivalents: (Ink - <lhk>)/<lhki>

® \\le can express such changes as an w-dependent correction to be

applied to the incident flux and the initial volume of crystal intercepting the
beam



Correction for a poorly aligned magnetite crystal

-30

-10

w (degrees)

0

10

Comparison of refined parameters from raw and corrected data with the literature

Rint % R1% Rall% wR2% Goof u Uo (A?) Ur (A2) Uy (A2)

Sasaki (1997) 1.6 1.0 0.2555(2) 0.0084(4) 0.0065(2) 0.0067(2)
raw data 31 5.3 5.3 12.3  0.95 0.253(1)  0.001(3)  0.003(2)  0.001(2)
corrected 7.3 1.8 1.8 3.6 1.41  0.2552(4) 0.008(1) 0.0078(5) 0.0062(5)

*The comparison suggests that the empirical correction can be very
effective for high-symmetry crystals

*Although model-dependent, such correction may be derived, with

caution, from Fo-Fc values




Rastering oscillation images

* [n some cases the instrument and sample alignment are hardly controllable.
This is for instance the case of cryostat measurements requiring bulky
equipment with external pipes that apply a torque on the sample stage,
increasing the instrument sphere of confusion

* A possible solution consists in the collection of multiple diffraction images at
different positions at wo

~4 pym Re sphere

the use of a microsphere allows excellent focusing Schematic view perpendicular to the beam of a
and reproducible positioning rotating crystal and “three beams”



Application: Single crystal diffraction of FeCOs to 90 GPa
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Structure of siderite FeCO; to 56 GPa and hysteresis of its spin-pairing transition

Siderite at lower mantle conditions and the effects of the
pressure-induced spin-pairing transition
B. Lavina,' P. Dera,” R. T. Downs,” V. Prakapenka,” M. Rivers,” S. Sutton,” and M. Nicol'

Barbara Lavina,! Przemyslaw Dera,? Robert T. Downs,> Wenge Yang,*® Stanislav Sinogeikin,* Yue Meng,* Guoyin Shen,*
and David Schiferl!



Accurate bond lengths measurements
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High P-T Synthesis:
New Iron Oxides

HPCAT-16IDB

laser heating system
Meng et al. RSI 2015

4 o

temperature gradie Ause severe heterogeneities
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Challenges In Synthesis And Characterization

* minimal samples strain are important to characterize structures with
relatively large unit cells, in a soft medium grain growth exacerbates
thermal gradients

* |large thermal gradients may cause chemical gradients in addition to
grain size and phase heterogeneity

* non stoichiometry and defect structures are to be expected in Fe-O
compounds

* such problems are much greater in systems with complex phase
diagram

Most syntheses result in highly heterogeneous samples
with respect to phase and grain size



Grain Size Variability

As a result of thermal
gradients, laser-heatead
samples might develop a
range of grain sizes.

Often, no ideal powder or
single crystal patterns can be
collected.

It is apparent that data
collection, reduction and
analysis strategies needs to
be tailored to the grain size.




Fe,O, Large Grains Patterns From Selected Locations
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Procedure Video Publication

Synthesis and Microdiffraction at Extreme Pressures and Temperatures

Barbara Lavinal, Przemyslaw Dera?, Yue Meng?®

1High Pressure Science and Engineering Center, Department of Physics and Astronomy, University of Nevada, Las Vegas, 2GeoSoilEnviroCARS, University of
Chicago, 3High Pressure Collaborative Access Team, Carnegie Institution of Washington
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Two New High-P Iron Oxides

Discovery of the recoverable high-pressure Unraveling the complexity of iron oxides at high
iron oxide Fe;O5 pressure and temperature: Synthesis of Fes;Og¢

Barbara Lavina**', Przemyslaw Dera‘, Eunja Kim®, Yue Meng®, Robert T. Downs®, Philippe F. Weck',
Stephen R. Sutton‘, and Yusheng Zhao**

Barbara Lavina'* and Yue Meng®
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Phase heterogeneities

FeO

Fe;Og

Fe4Os

Interesting phase mapping can
be obtained reasonably fast
The distribution of synthesized
iron oxides (red: Fe4Os, blue:
FesOg, green: wustite) supports
the inferred composition of
FesOg, the new phase is
chemically intermediate
between wustite and Fe4Os and
is in fact more abundant in
between the two known
oxides.

There are no evidences in the
P-T range investigated of a
“continuum” of Fe304+FeO
compounds!



Summary

* The high-pressure world is extremely fascinating and exotic, far from
being fully understood and explored, even for elements.

* High-pressure experiments are uniquely challenging, including
achieving desired conditions, probing samples, processing and
interpreting data.

» Large scale user facilities such as the APS and the SNS but many
others in the USA and around the world provide unigue and
constantly improving research opportunities.

* Probing matter and processes as they occur in controlled
environments is exciting and certainly will have an even greater role
in the future.
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