Resonant Inelastic X-Ray Scattering & Electron Dynamics

Jason N. Hancock University of Connecticut jason.hancock@uconn.edu

Neutron and X-ray Scattering School 2019 June 24, 2019, Argonne National Laboratory, Argonne, IL

UConn Condensed Matter Physics

Alexander Balatsky Theory

Gayanath Fernando Theory

Boris Sinkovic Thin films synthesis Electron spectroscopy

Elena Dormidontova Soft Matter Theory

Jason Hancock THz, Infrared, X-ray Applied physics

Ilya Sochnikov Transport Scanning SQUID

Niloy Dutta Photonics Applied physics

Menka Jain Thin film synthesis

Barrett Wells PLD films, Muons, Neutrons, ARPES

Plus strong connections with: AMO group, UConn Institute for Materials Science, New UConn Tech Park

Photon Science at UConn

My PhD research does/will likely use...

My PhD research does/will likely regard...

Spectroscopy in a nutshell

The Electromagnetic Field

- Photons are bosons, independent, luminal
- Described by Maxwell's equations at low energy, QED´ at high energy
- Fully understood, quantized, modes are described as

$$v\rangle = |n_0, \dots n_{\mathbf{k}} \dots \rangle$$

Vector potential:

$$\mathbf{A}(\mathbf{r},t) = \sum_{\mathbf{k}} \sum_{\mu=-1,1} \left(\mathbf{e}^{(\mu)}(\mathbf{k}) a_{\mathbf{k}}^{(\mu)}(t) e^{i\mathbf{k}\cdot\mathbf{r}} + \bar{\mathbf{e}}^{(\mu)}(\mathbf{k}) \bar{a}_{\mathbf{k}}^{(\mu)}(t) e^{-i\mathbf{k}\cdot\mathbf{r}} \right)$$

Spectroscopy, general remarks

Sample can exchange energy with EM field

$$|\psi_g\rangle \otimes |v\rangle \rightarrow |\psi_e\rangle \otimes |v'\rangle$$

(sample) (vacuum)

One photon Optical spectroscopy X-ray absorption

$$|n_0,...n_{\mathbf{k}}...\rangle \rightarrow |n_0,...n_{\mathbf{k}}-1...\rangle$$

Y NUN NINY

Two photon Raman Inelastic X-ray Scattering

$$|n_0, ... n_{\mathbf{k}} ... \rangle \rightarrow |n_0, ... n_{\mathbf{k}} - 1 ... n_{\mathbf{k}'} + 1 ... \rangle$$

Related spectroscopies:

ARPES

EELS

Photon spectroscopies

One-photon

- Can measure from reflection or transmission in time or frequency domain
- Use Fresnel's equations to determine n+ik, . $\sigma_1-i\sigma_2$, $\epsilon_1+i\epsilon_2$ and relate to fundamental behavior
- X-ray absorption collected differently, through total electron or total fluorescence yield

Two-photon

- IXS and RIXS (also REXS, Raman)
- Probes electronic excitations in a momentum-resolved way
- Technical advances making rapid progress

Two-photon scattering examples

Raman=inelastic light scattering

Modern Raman scattering HEAVY FERMIONS Kung, et al Science 347, 1339 (2015)

- Laser source=high resolution
- Lattice excitations easy to see
- Electronic and magnetic excitations r

Chirality density wave of the "hidden order" phase in URu₂Si₂

H.-H. Kung,^{1*} R. E. Baumbach,²[†] E. D. Bauer,² V. K. Thorsmølle,¹[‡] W.-L. Zhang,¹ K. Haule,^{1*} J. A. Mydosh,³ G. Blumberg^{1,4*}

High Energy Resolution Inelastic X-ray Scattering

- Sector 30, Advanced Photon Source, Argonne National Lab
- 23,724 eV incident energy
- <1 meV incident bandwidth
- Resolving power $E_i/\Delta E_i = 2 \times 10^7$
- 9 analyzers sample, 9 momenta transfers simultaneously, 9m arm
- 1.5 meV energy resolution
- 20µm x 5µm spot size
- Measures energy and momentum distribution of lattice vibrations $S(\vec{q},\omega)$

What is this?

The emission spectrum of a star at z=0 redshift

A flat rainbow snake

A fashionable belt

Balmer series of emission by hydrogen

There is more than one correct answer

What is this?

spectrum of a star at z=0 redshift

Balmer series

$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$
Schrodinger equation for 1/r potential: $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi$
Hydrogen wavefunctions: $\Psi_{nlm} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3}} e^{-r/na} \left(\frac{2r}{na}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na}\right) Y_l^m(\theta, \phi)$
Energy levels: $E_n = -\left[\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2\right] \frac{1}{n^2}$
Bohr radius: $a \equiv \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.529 \times 10^{-10} \, \mathrm{m}$

Quantum numbers: n, l, m

Generalize for nuclear charge +Ze:

How does Balmer series change multi-electron atoms like C?

1s sees full nuclear

charge +Ze

Core electrons much more tightly bound than outer ones

Lyman (1->n) series for multi-electro atoms form "K" X-ray edges

1s

2s

2p

Ze

Atomic transitions in solids

X-ray transition lines

X-ray absorption spectroscopy (XAS)

X-ray absorption spectroscopy, uses to determine valence state

Example: Yb

Has two stable valence states Yb⁺², has f^{14} full shell - nonmagnetic ion Yb⁺³ has f^{13} one hole in f shell - long j=7/2 mag moment

Real materials can have things in between, depends on interactions

Yb14MnSb11 - no magnetic moment coming from Yb

YbAl3 - long moment paramagnet from Yb⁺³ in f^{13} state

X-ray edge absorption... and RIXS

Copper K (example)

Resonant Inelastic X-ray Scattering (RIXS)

- Resonant Raman spectroscopy, with resonance at an X-ray edge
- Described by Kramers-Heisenberg formula
- Large momentum transfer
- Atomic-species and valence-specific information

$$\Delta \omega = \omega_i - \omega_f$$
$$\Delta \mathbf{k} = \mathbf{k}_i - \mathbf{k}_f$$

Kramers-
Heisenberg:
$$\frac{d^2\sigma}{d\Omega_{k'}d(\hbar\omega'_k)} = \frac{\omega'_k}{\omega_k} \sum_{|f\rangle} \left| \sum_{|n\rangle} \frac{\langle f|T^{\dagger}|n\rangle\langle n|T|i\rangle}{E_i - E_n + \hbar\omega_k + i\frac{\Gamma_n}{2}} \right|^2 \delta(E_i - E_f + \hbar\omega_k - \hbar\omega'_k)$$

Energy dispersion in RIXS

Energy dispersion

Practical difference: Soft vs Hard RIXS

http://henke.lbl.gov/optical_constants/

Practical difference: Soft vs Hard RIXS

λ: 1000 A	100 A	10 A	1 A	0.1 A	
Extreme Ultraviolet		Soft X-ray Tender X-ray	Hard X-ray		
E:10 eV	100 eV	1 keV	10 keV	100 keV	
X-rays must be in vacuum			X-rays can be in helium, air atmosphere		
More scattering, lower penetration			Less scattering, more bulk information		
SIX instrument at NSLS-II (commissioning now)			MERIX at	APS, 29-I-D-B (world-leadin	a)

Technical difference: Soft vs Hard RIXS

How to disperse the X-rays?

Inefficient Index changes too small to be effective

Grating?

If feature sizes can be on order wavelength

Soft X-ray ~ 1 nm

Crystal?

Feature size (atoms) of order X-ray wavelength

Hard X-ray << 1nm

Technical difference: Soft vs Hard RIXS

ADRESS beamline at PSI (no spectrometer)

ERIXS endstation at ESRF (no beamline shown)

MERIX spectrometer, sector 27-ID-B, APS

Scientific difference: Soft vs Hard RIXS

N-particle spectroscopy

"Direct" RIXS at transition metal L edges

N-particle spectroscopy

"Indirect" RIXS at transition metal K edges

High-*T*c cuprate superconductors

Strong repulsion favors
 antiferromagnetic state

Hole doping a 2D Mott insulator induces high-temperature superconductivity

Hubbard model describes AFM

$$H = -t \sum_{\langle i,j \rangle,\sigma} (c_{i,\sigma}^{\dagger} c_{j,\sigma} + h.c.) + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow}$$

Mott gap dispersion in high-Tc superconductors (Cu K edge)

Incident energy and temperature dependence

Lu, JNH, et al. PRB **74**, 224509 (2006)

Ellis, et al. PRB 77, 060501 (2008)

Experimental realization of 0-D HTSC

One hole, one plaquette

- Many wavefunctions of varied angular symmetry
- Ground and molecular orbital states are the only ones of x²-y² symmetry
- Simple RIXS selection rule (for indirect, K edge transitions): symmetry=constant

I-plaquette RIXS calculation

A simple cuprate, CuB₂O₄

Hancock *et al. NJP* **12**, 033001 (2010)

Elusive properties of MO excitation

Hancock *et al. PRB* **80**, 092509 (2009) Hancock *et al. NJP* **12**, 033001 (2010)

Electron-phonon coupling at the MO excitation

it Energy (eV)

- Simple Franck-Condon model explains remaining features of the spectra
- · Gives an estimate of the electron-phonon coupling parameter

Theory of RIXS in the cuprates

 Calculations model RIXS cross section to understand electronic structure of high-T_c superconductors

Chen, ... Hancock, ... et al. PRL 105, 177401 (2010)

Magnetically-ordered states

†+ **†**+ **†**+ **†**+ **†**+ **†**+

D = ferrimagnetic

- Magnetic interactions between magnetic ions can lead to ordered states
- Disturbance in order forms "spin waves" or "magnons"
- Like sound, magnons carry momentum and energy
- Dispersion relation is important

Magnetic excitations via RIXS

 2008 Cu K edge RIXS showed bi-magnon feature, consistent with Raman q=0 result

 2009 Cu L edge (soft X-ray) RIXS showed a shoulder of elastic line consistent with *single*-magnon excitation

Braicovich, Ghiringhelli, et al, PRL 102 167401 (2009)

Extended interactions in a Mott insulator Sr₂CuO₂Cl₂

Iron pnictide superconductors and Correlated 5d systems

BaFe₂As₂

 $SrIr_2O_4$

Other RIXS highlights

- Orbiton dispersion
- Phonons excited through core hole intermediates
- Spin-2 (triplon) excitations
- Incipient CDW effect at Tc in YBCO
- Paramagnon fluctuations in doped cuprates

25

2.0 Energy

13

1.10 1.05

1.00

0.95 0.25 0.30 0.35 0.40

В

q_, (r. l. u.)

d)

E_i = 452.0 eV

T = 13 K

200

YTiO,

(a)

Yavas, et al JPCM 22, 485601 (2010)

Soft X-ray RIXS work

- · Rediscovery of the Kondo gap (now with X-rays)
- · 1st mapping of magnon spectra in Sr₂CuO₂Cl₂ (non-local exchange)

700

 Connected RIXS to edge singularity physics

(a) FeTe, Fe L,

Incident Energy ω (eV) 202 202 202 602 802 602

695

Single crystals from Enrico Giannini group, Geneva

 $\begin{array}{ccc} 700 & 705 \\ \text{Scattered Photon Energy } \omega' \ (\text{eV}) \end{array}$

c b a

C

Guarise et al. PRL 12, 033001 (2010) Hancock et al. PRB 82, 020513R (2010)

Future technique directions with RIXS

Summary/outlook

- RIXS is a 21st century technique, deep probe of exotic excitations
- Many opportunities on horizon for new generation of synchrotron scientists
- APS and NSLS-II have world-leading opportunities in hard and soft RIXS science
- New opportunities for science of correlated electron materials
 - Mixed-valent/Kondo lattice physics
 - High-temperature superconductivity
 - Search for exotic phases for quantum information science

Thank you!