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Imaging has a broad scientific portfolio
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High Flux Isotope Reactor (HFIR) 
Intense steady-state neutron flux 
and a high-brightness cold neutron source

Spallation Neutron Source (SNS) 
World’s most powerful accelerator-based neutron source

Dedicated Imaging Instrument (CG-1D)
Steadily improving capabilities

Expanded support

Imaging is a Growing Part of the ORNL 
Neutron Sciences Program

Techniques such as Bragg-edge imaging are 
being implemented on BL3 SNAP 

diffractometer (VENUS is under construction)

Future CUPI2D beamline at STS (Bragg 
edge and grating interferometry)



5

10-9
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Bragg edge Scattering Grating 
Interferometry

Transmission spectra of pure Ni, 
Ni39Cr11, and Inconel 718 powders.

Cut through computed tomogram 
showing internal flow channels in an 
additively manufactured Inconel 718 
turbine blade

Radiograph of a membrane in a 
proton exchange membrane fuel cell 
(PEMFC) at a resolution of 1.98 μm

<200> Bragg edge strain map of 
additively manufactured Inconel 718 
at 15, 200, 400 and 550 Mpa.

Transmission radiographs at different 
stages of lithiation during the discharge 
process. Yellow and green colors 
indicate an increase in Li ion content in 
each cathode

Radiography,
Computed 
Tomography 
and 
Resonance

1.0 mm

Microscopy

Radial average absolute differential 
macroscopic cross section vs. 
wavevector transfer in Zircaloy-4 
cladding material

SANS raw data of microporous 
titanium carbide-derived carbon 
(TiC-CDC) at 800 C

4 cm x 4 cm x 1 cm thick Al foam 
(invisible unless measured with 
gratings)

Radiograph (top) and Dark field 
image (bottom) of 1-10 μm layers of 
steel foil

Direct structureInferred structure (indirect) 

Vertical slice from a neutron 
microtomography dataset showing 
dendritic microstructures of lead, 
voids and gold in a sample of a gold-
lead alloy 

HFIR CG-1D/MARS (microscopy)
FTS VENUS (Bragg edge)

STS CUPI2D (combined Bragg edge and neutron grating interferometry) STS VENUS (Resonance)

FUTURE PROPOSAL HFIR MERCURY (high penetration/large samples)
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Resolution sensitivity

CUPI2D (STS cold)
Dynamics: Materials science 
(energy materials, alloys, etc.), 
biology, etc., under extremes 
conditions.

VENUS (FTS thermal, 
cold)
Phase transformation 
in crystalline materials 
such as advanced 
alloys and natural 
materials under 
stress, nuclear 
materials, energy 
materials
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MARS (HFIR cold)
Thin samples: Micro-defect 
detections and dynamic processes 
in engineered and natural 
materials, magnetic domain 
mapping, life sciences and biology

VENUS (FTS epithermal)
Heavy element detection: nuclear 
materials, geosciences

0.5 mm

MERCURY (HFIR epithermal)
Difficult to penetrate materials: Life 
sciences and biology, large engineering 
materials (H-rich materials, thick and 
large objects), Nuclear materials, etc.
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One of 8 selected STS 
instruments
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Neutrons interact uniquely with matter

Neutron

X-ray

https://www.psi.ch/en/niag/what-is-neutron-imaging
[M. Strobl et al., J. Phys. D: Appl. Phys. 42 (2009) 243001]

• Non-destructive

• High penetration

• Sensitive to light 

elements (H, Li, 

etc.)

• Isotopic contrast

https://www.psi.ch/en/niag/what-is-neutron-imaging
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From raw image to normalized image
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Principle of Bragg edge imaging (using cold neutrons)

• Spallation neutron sources discriminate neutron wavelength (or energy) by using 
the time-of-flight (TOF) technique
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White-beam (or reactor-based) neutron 
radiograph: 

sums over all neutron wavelengths

Wavelength-dependent (or TOF) neutron radiographs 
(Discrete neutron wavelengths)
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Position of the edge gives the d-
spacing of <hkl> or displacement 
gives the strain

Wavelength range ~ [1-10 Å]

Barton J.P., Bilheux H.Z., Bossi R., Herwig K.W., Santodonato

L., Taylor M., "Chapter 12: Neutron Radiography for 

Nondestructive Testing", Nondestructive Testing Handbook, 

Fourth Edition: Volume 3, Radiographic Testing (RT) (2019).

https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca
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Front-end optics 
buried in shielding

Cave 
shielding

25 m 
Detectors

Beam stop

Radiological 
Materials Area 
(RMA)

Control Hutch

Beam path

VENUS layout and unique capabilities

Bragg edge imaging: 

20 x 20 cm2, spatial resolution ~ 100 µm, 

time resolution is 5 µs.

Resonance imaging: 

4 x 4 cm2, spatial resolution ~ 150 µm, time 

resolution is 150 ns. Sample area
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Preparing for an imaging experiment

• Predict overall transmission in your sample (iNEUIT)

• Contact instrument team to optimize your experimental 
measurements (detector, SNR, sample environment, etc.)

• Contact computational instrument scientist to discuss data 
processing and analysis requirements (Python Jupyter
notebooks)
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Experiment planning tools: NEUIT (NEUtron Imaging Toolbox)

• Tools available:

1) Neutron transmission

Compute white-beam transmission 

2) Neutron Resonance

Simulate energy-dependent signal

3) Composition convertor

Perform wt. % <==> at. % conversion

• Nuclear database supported

– ENDF/B-VIII.0 (BNL)

– ENDF/B-VII.1 (BNL)

• Elemental/isotopic info

– PeriodicTable 1.5.0 (NIST)
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(static)

NEUtron Imaging Toolbox (NEUIT, https://neuit.sns.gov/ )
For white-beam imaging at CG-1D

(demo)

https://isc.sns.gov/
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NEUtron Imaging Toolbox (NEUIT, https://neuit.sns.gov/ )
For resonance imaging

(static)
(demo)

https://isc.sns.gov/
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Jupyter Notebooks Demonstration

• Samples: Ni and Cu powders in Al cans measured at SNS BL-03 
SNAP

• Goals: 

– Load and normalized data in iBeatles software

– Plot and Identify Bragg edges 

– Fit Bragg edges 

– Calculate d-spacing
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How to get to analysis server and start iBeatles

• On a web browser, type “analysis.sns.gov”

• Enter username and password

• On analysis server, open a terminal window

• Type: /SNS/users/j35/bin/start/iBeatles
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We have a user home page with instructions and tutorials 



1818

Step-by-step tutorials 
with animated 

demonstrations

Something you want to 
see on our user 

website? Contact Jean 
Bilheux

bilheuxjm@ornl.gov

https://neutronimaging.pages.ornl.gov/

mailto:bilheuxjm@ornl.gov
https://neutronimaging.pages.ornl.gov/en/


1919

This week’s imaging experiment: time-of-flight neutron 
grating interferometry

• International collaboration between: 

– Markus Strobl and Matteo Busi, Paul Scherrer Institute, Switzerland

– Simon Sebold, TUM-FRM-II, Germany

– ORNL neutron imaging team

• We are measuring the small angle scatter the sample produces when 
interacting with neutrons:

– This is called the dark field imaging technique

– We are using a symmetric grating system (i.e., equidistance between the 3 
gratings) because it can accept a broad band of neutrons will keeping good 
visibility
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This week’s imaging experiment: time-of-flight neutron 
grating interferometry

G0

(25 𝜇m period)
G1

(12.5 𝜇m period)
G2

(25 𝜇m period)

Sample 
position

NEUTRONS
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G2

(25 𝜇m period)

Samples
Detector

2 cm

NEUTRONS
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Kim, Y.; Valsecchi, J.; Oh, O.; Kim, J.; Lee, S.W.; Boue, F.; Lutton, E.; Busi, M.; Garvey, C.; Strobl, M. Quantitative Neutron Dark-Field Imaging 

of Milk: A Feasibility Study. Appl. Sci. 2022, 12, 833. https:// doi.org/10.3390/app12020833

𝜉 = 𝜆 Ls /p
V = (Imax - Imin)/(Imax  + Imin)

Modulation pattern on 
every detector pixel 
obtained by stepping G1 
perpendicular to beam

Grünzweig, C., Quantification of the neutron dark-field imaging signal in grating interferometry. Physical Review B - Condensed Matter and 

Materials Physics, 88(12), 1–6. https://doi.org/10.1103/PhysRevB.88.125104
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Example of DFI Data Analysis

Visibility is related to real-space correlation

For dilute solution of spherical particles

Cross section
Volume 
fraction

Scattering length 
density contrast

Correlation length

Radius

Strobl, M. et al. (2016) ‘Wavelength-dispersive dark-field contrast: micrometre structure 

resolution in neutron imaging with gratings’, Journal of Applied Crystallography, 49(2), 

pp. 569–573. Available at: https://doi.org/10.1107/S1600576716002922.

Strobl, M. (2015) ‘General solution for quantitative dark-field contrast imaging with 

grating interferometers’, Scientific Reports, 4(1), p. 7243. Available at: 

https://doi.org/10.1038/srep07243.

https://doi.org/10.1107/S1600576716002922
https://doi.org/10.1038/srep07243
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Chopper shelf

Cave

Artistic rendering of VENUS

In the spirit of “One ORNL”, VENUS colors 
are “ORNL-green” and white.
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CUPI2D’s Current Conceptual Design

Optics 
Elevator No. 1

Pedestal supports 
additional flight tube 
to get as close as 
possible to sample

Optics 
Elevator No. 2

Recessed 
rail system

@18.8m from 

moderator

Side Access 
provided 

@26.5m from 

moderator
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