High Pressure measurements with X-rays

Stella Chariton

The University of Chicago Center for Advanced Radiation Sources <u>GSECARS (Sector 13, APS)</u>

Talk Overview

- ► The pressure scale
- ▶ Why apply high pressure? Experiments at extreme conditions
- High pressure generation devices
 - Focus on Diamond Anvil Cells
- Why synchrotron radiation? Overview of X-ray techniques at high pressures

- High pressure techniques for X-ray scattering
 - ► Focus on X-ray Diffraction

The pressure scale

- 1 atm = 101325 Pa
 - 1 Pa = a dollar bill resting on a flat surface
 - 2 kPa = pressure of popping pop-corn
- 1 MPa = pressure of average human bite
- 360 GPa = pressure in the center of the Earth
- 1 TPa = 100 Eiffel towers stacked on top of a penny

Fun Facts check: Orders of Magnitude – Wikipedia

 $Pressure = \frac{Force}{Area}$

The Pascal unit

Why apply high pressure?

Pressure cookers

Steam pressure allows higher temperatures to break down tough tissue Physical, chemical & optical **properties** of materials change with **pressure**!

4

Liquefied Petroleum Gas tanks Pressure and cooling turn gas into liquid for easy storage

Why apply high pressure?

Superconductors

LaH₁₀ (~249 K, 150 GPa) Sun et al. 2021, Nature Com

Semiconductors

Cubic Ti₃P₄ Bhadram et al. 2018, Phys. Rev. Mat.

Super-hard Materials

Nanodiamond balls Dubrovinsky et al. 2022, Nature

Physical, chemical & optical **properties** of materials change with **pressure !**

Deep Planetary Interiors

High Energy Materials

Salts of Polynitrogen anions Laniel et al. 2019, Nature Com

Thermoelectric Materials

In_xCo₄Sb₁₂, Skutterudites Leszczyński et al. 2017, J. Alloys Compd.

Experiments at Extreme Conditions

High Pressure

Courtesy of Lucy Moorcraft/SINE2020

Courtesy of COMPRES

Large Volume Presses Diamond Anvil Cell

Paris-Edinburgh Cell Made by Nature

High Temperature

Laser Heating Furnace Heating > 7000 K

Low Temperature

Cryostat enclosures Cryogenic jets as low as 0.03 K

Magnetic Fields

6

Courtesy of Thomas Meier, BGI, HPSTAR

Electric Fields

Courtesy of Sergey Medvedev, Max Planck Inst

Radiation Flux

Shen & Mao, 2017, Rep. Prog. Phys

Experiments at Extreme Conditions

Tiny & Unique

Dubrovinsky et al. 2022, Nature

" The Synchrotron Life"

7

Argonne Guest House

Challenging sample preparations & measurements Every single second of beamtime matters

8

History of High Pressure Science

Percy Williams Bridgman (1882-1961)

Father of modern high-pressure research

- Achieved ~40 GPa in the laboratory
- New pressure apparatus & Self-sealing gasket
- ▶ Nobel Prize in 1946 for his work in the field of high-pressure physics
- Earth's most abundant mineral, bridgmanite (Mg,Fe)SiO3, is named after him

Bridgman Seal

Source: Wikipedia, Britannica

High pressure generation devices

Pressures ✓ 0 – 1000 GPa ✓ Hydrostatic or not

✓ Static or dynamic

Types

- ✓ Piston / Cylinder
- 🗸 Anvils
- Laser Shock waves

<u>Materials</u>

- Tungsten Carbide
- ✓ Tempered high strength steel
- ✓ Diamond

Large Volume Press multi anvil apparatus

Tony Yu, Beamline scientist at 13IDD, APS

- Anvils made of WC, cBN, sintered diamond
- Anvil truncation size defines the pressure range
- ✓ LaCrO₃, graphite or capsule material used as heaters
- ✓ Typical conditions 0-30 GPa (max ~95 GPa), ~3000 K
- Working in deformation or hydrostatic mode
- X-ray transparent materials allow measurements at synchrotrons

Paris-Edinburgh Cell

Yu et al. 2019, Minerals

- ✓ Anvils made by sintered materials (WC, diamond, BN)
- Portable
- Typically can hold large volumes of sample 1-100 mm³
- Modified versions for Neutron diffraction and study of liquid phases using X-rays

Kono et al. 2013, PEPI

Diamond Anvil Cell

DAC is the most popular high-pressure device for X-ray experiments, because diamond has :

- Highest known hardness & optically transparent
- Fracture toughness, highest known thermal conductivity, low friction and adhesion, ultra high melting point, highest electron dispersion, high dielectric breakdown, radiation hardness, high magnetic field compatibility, biocompatibility

First diamond anvil cell created in 1957-1958 (NIST museum)

Kantor et al. 2012, Rev Sci Instrum

Diamond Anvil Cell Variety

Remote program during pandemic GSECARS-June-2020

DAC components that can vary :

- ✓ Cell body
- ✓ Supporting seats
- Diamond anvils
- ✓ Gasket material
- ✓ Pressure transmitting medium
- ✓ Pressure calibrant
- ✓ Sample arrangement

Diamond Anvil Cell Variety

Panoramic DAC with Be gasket Nuclear Resonant Inelastic X-ray Spectroscopy or Radial X-ray Diffraction

BX90 & Diacell120 with Boehler-Almax seats and diamonds Single-crystal X-ray Diffraction Brillouin Spectroscopy or Non-crystalline X-ray Diffraction (PDF)

LeToullec pressure driven cell or others A can with an inflating membrane allows remote pressure increase

4

Standard symmetric cell Powder X-ray Diffraction Nuclear Forward X-ray Scattering (or SMS) IR, Raman Spectroscopy

Standard seat WC or cBN standard or Brilliant cut diamond X-ray and optical opening $\leq 60^{\circ}$

Boehler-Almax seat and anvil *X*-ray and optical opening \geq 70°

Double stage diamond anvils and Toroidal Anvils Ultra high-pressure generation

Perforated Diamonds Removed Material for X-ray Spectroscopy studies.

Dubrovinsky et al. 2015 & 2022, Nature

Diamond Anvil Cell Supporting Tools

Gas loading system COMPRES/GSECARS, APS

Advanced laser system at GSECARS Raman, IR, UV, CARS, laser heating

Common Pressure Transmitting Media (PTM)

15

Gases: He, Ne, Ar, Xe, CO₂, N, H Liquids: ethanol/methanol, silicon oil Solids: NaCl, KCl, KBr, MgO, SiO₂

Common Pressure Calibrants

Au, Pt, Ruby, YAG, Diamond Raman edge, Equations of state of common samples

Diamond Anvil Cell Supporting Tools

16

Micromanipulator at GSECARS

Gasket laser drilling system at GSECARS

Glovebox for DAC loadings at HPCAT

Microscopes at HPCAT

Examples of common DAC supporting infrastructure available to users

✓ Double-sided Laser Heating

17

- ✓ Resistive Heating
- Cryogenic treatment
- Cryogenic + laser heating

Application of pressure and temperature promotes:

- New optical, physical properties
- Phase & structure transitions
- Crystal growth & recrystallization
- Reaction chemistry

✓ Double-sided Laser (internal) Heating YAG or CO₂ lasers , Continuous or Pulsed mode

X-ray and lasers are aligned. A crystal couples with the 1064 nm laser and heats at 2400 K, 35 GPa.

Thermal emission is measured. The spectrum is fitted using the Planck equation. Temperature is estimated.

18

~500 to >7000 K

Resistive (external) heating
Ceramic furnaces, graphite inserts, others

Lai et al. 2020, JOVE

External heating provides precise and well controlled heating.

However, it is limited to low temperatures (< 800 K) due to risk of diamond anvil graphitization and failure.

19

EH-DANCE external heating enclosure Allows stable heating up to ~1300 K

Cryogenic Treatment

Nitrogen flow in air or in vacuum

Cryo Jet, 13-IDD, APS

Cryostat enclosure, 13-IDD, APS

Cryogenic temperatures as low as 0.03 K can be achieved

DAC cooling allows safer laser heating sessions of sensitive sample configurations or crystal growth of low temperature phases

Alkali metals + H₂ = most challenging for DAC

21

Why synchrotron radiation?

High Pressure Science at APS

High pressure = tiny sample volumes

typically, ~ 0.003mm³, < 30 μ m thick

Synchrotrons provide a highly stable X-ray beam ideal for high pressure studies

- High Intensity, brightness
- Coherent X-ray beam & low divergence
- Broad energy range, tunable energy
- ✓ Pulsed time structure
- Polarized radiation

22

X-ray synchrotron-based techniques at high pressures

X-ray Diffraction

Powder (PXRD)

Single-crystal (SCXRD)

Polycrystalline

Amorphous

Radial

X-ray Spectroscopy

X-ray Absorption (XAS)

X-ray Emission (XES)

X-ray Absorption near edge (XANES)

X-ray Absorption fine structure (XAFS)

X-ray Fluorescence (XFS)

â

X-ray Imaging

Radiography

Tomography (CMT)

Phase contrast

Coherent diffraction

X-ray Inelastic Scattering

Non-resonant X-ray Inelastic scattering (NIXS) (X-ray Raman scattering)

Resonant X-ray Inelastic scattering (RIXS)

Nuclear Resonant Inelastic X-ray scattering (NRIXS)

Nuclear forward X-ray scattering (NFXS)

Compton Scattering (CS)

X-ray Diffraction

What is different at high pressure?

X-ray Diffraction

Single crystal Re₂C loaded with Ne pressure medium

A laser heated sample has decomposed in various phases

24

Reflections in a high-pressure environment

Starting material
Diamond anvils
Pressure transmitting medium
Decomposition products
Gasket material
Thermal insulators

- ✓ Pressure markers
- ✓ Satellite reflections ...

X-ray Diffraction

25

When will new reflections appear at extreme conditions?

- ✓ Structure/symmetry has changed
- ✓ A phase has decomposed
- ✓ Crystals have change orientation
- ✓ An amorphous phase has crystallized

X-ray Diffraction Equations of State

Birch-Murnaghan equation of state

26

$$P(V) = \frac{3K_0}{2} \left[\left(\frac{V_0}{V}\right)^{\frac{7}{3}} - \left(\frac{V_0}{V}\right)^{\frac{5}{3}} \right] \left\{ 1 + \frac{3}{4} (K'_0 - 4) \left[\left(\frac{V_0}{V}\right)^{\frac{2}{3}} - 1 \right] \right\}$$

P – pressure

K₀ – bulk modulus at zero pressure

 V_0 – volume at zero pressure

 $K_{0}{\ensuremath{^{\prime}}}$ – derivative of bulk modulus with respect to pressure

The bulk modulus describes how compressible a material is.

High K₀ = harder to compress

X-ray Diffraction Melting curves

When a phase melts, peaks disappear, and diffuse scattering appears due to the liquid phase

 Fe_3C and Fe_7C_3 up to 185 GPa and 5200 K

Liu et al. 2016, GRL

X-ray Diffraction Chemical reactions

Detailed XRD map allows localization of the various decomposition products within the sample chamber

28

Os5N28-3N2

Single-crystal XRD approaches on a multigrain/multiphase dataset allow structure solution of a novel phase

Bykov et al. 2020, Angew. Chem. Int. Ed,

X-ray Diffraction non-crystalline structure

MCC system coupled with laser heating at 13-IDD The Multi Channel Collimator designed to reduce background from the sample high pressure environment.

Morard et al. (2013) Rev. Sci. Instrum. 84, 063901

29

Information accessed: Polymerization, structure factors, radial distribution functions, densities etc...

X-ray Diffraction non-crystalline structure

Multi Channel Collimator and Paris-Edinburgh cell to study liquids

X-ray Diffraction dynamic compression

Ricks et al. 2023, submitted

X-ray Diffraction MHz dynamic compression

32

XFEL facilities provide faster X-ray diagnostics.

At EuXFEL, X-ray pulses are produced in repetition of 4.5 MHz.

In combination with dDACs we can study material behavior in the \leq 550 µs time window.

Husband et al. 2023, JSR

X-ray Imaging PE cell

Schematic of setup at 16BM-B beamline, HPCAT, APS

Kono et al. 2015, Rec Sci Instrum

NaAlSi3O8 + CaCO3 at 2.5 GPa, 1400oC melting

33

200 µm

The 2 melts coexit with boundaries enhanced by phase contrast

See the video here

X-ray Radiography viscometry

Falling Sphere method

34

A WC sphere starts sinking in NaCl melt and then passes in liquid sulfur.

The two melts have different viscosity.

Plays 200 times slower

Kono et al. 2015, Rec Sci Instrum

3D X-ray Tomography high pressure

Load Principle of Microtomography set-up (a) (b) WC anvil CCD camera Force Pressure medium (BE) Microscope Sample chamber objective Pressure medium (BE) Sample X-rays. Scintillator Harmonic X-rays X-rays drive Containment ring Drickamer cell Visible Transmitted X-rays light Mirror Pressure medium (BE) Force Rotation stage WC anvil Load

35

Yu et al. 2016, PEPS; Wang et al 2010, J Earth Sci

3D X-ray Tomography study shear strain

Olivine $(Mg,Fe)_2SiO_4$ and Fe-Ni-S composite at high pressure and temperature. While the anvils are twisted producing shear strain, 3D tomography images are collected and reconstructed. Thanks to phase absorption contrast the olivine matrix is removed and alloy blobs are shown.

37

Fe

do

Multiple techniques combined the story of siderite FeCO₃

X-ray diffraction shows a sudden volume collapse at ~45 GPa.

This is due to the Fe²⁺ pressureinduced spin transition.

Let's see how other X-ray techniques note this transition...

Nuclear Forward X-ray Scattering (NFXS) Synchrotron Mössbauer Source (SMS)

About the methods

- Phonon densities of state
- (Time-resolved) Mössbauer information
- Isotope specific (here ⁵⁷Fe)
- Energy at beamline tuned at 14.4 keV

39

Nuclear Resonant Inelastic X-ray Scattering (NRIXS)

About the method

- Phonon densities of state
- Debye sound velocities
- ✓ Isotope specific (here ⁵⁷Fe)
- Energy bandwidth optimized in the meV range

Chariton, 2019, PhD thesis

A typical NRIXS spectrum

The principles in a NRIXS spectrum

Abrupt change in the density of phonon state

Sound velocities suddenly increase

Non-resonant Inelastic X-ray scattering (NIXS) X-ray Raman scattering (XRS)

About the method

- Probe low energy absorption edges
- Sensitive to local atom coordination and oxidation state

Abrupt shift of XRS spectra

40

FeCO₂ (He

41

X-ray Emission Spectroscopy (XES)

Rowland Circle spectrometer Courtesy of Eric Rod

About the method

- Deep core electrons excited by X-rays
- Fluorescence radiation is collected
- Information on the filled electronic states
- The excitation X-ray source needs to have higher energy that that of the fluorescent photons.
- Diamond becomes increasingly absorbant of X-ray energies below 10keV, thus various geometries have been developed

Mattila et al. 2007, J Phys Condes Matter

Collapse of the Kβ' satellite intensity above 50 GPa Loss of Fe magnetic moment

42

Neutron Diffraction in the DAC

Doster, 2007, AIP conf proc

Ideal to investigate the structure of hydrous/hydride phases

However, sufficient sample volumes are required to obtain reasonable scattering signal

Special assemblies & DACs exist for neutron measurements

Clamped DAC, Versimax anvils Haberl et al. 2017, High Pres Res

High pressure science in SNS and HFIR

43

National Laborator

Additional material

Laser Shock Compression Experiments

Paris-Edinburgh Cell

<u>Review – High Pressure devices at Synchrotron</u>

- Review DAC studies using X-rays
- Crystallography at extreme conditions
- Materials at TPa pressures in the DAC
- <u>3D X-ray microtomography under pressure</u>
- Neutron diffraction at megabar pressures
- Nuclear resonant X-ray techniques in the DAC
- High pressure X-ray Emission Spectroscopy at APS

Thank you for your attention!

Any questions ?

45

stellachariton@uchicago.edu