

Resonant elastic and inelastic scattering

Mark P. M. Dean Brookhaven National Laboratory

July 18th, 2022 Solution and X-Ray Scattering

Outline

Resonant x-ray scattering (RXS)

- What is it?
- Why should you care?
- X-ray resonances
- Some theory

Instrumentation

- Hard vs. soft x-rays
- Elastic vs. inelastic

Examples

- Kitaev magnetism in RuCl₃
- Oxygen states in superconducting nickelates

Extended versions

- Imaging
- Ultrafast

What is resonant scattering?

What is resonant x-ray scattering in one sentence?

Family of photon-in photon-out techniques that use x-ray resonances to access

- (i) Element & valence charge specificity or
- (ii) Electronic information: Magnetism, valence charge, electronic orbitals, etc.

Reminder of x-ray scattering & x-ray absoprtion

X-ray-matter interaction for nonresonant x-ray scattering

Classical cartoon of atom

X-ray scatter from all electrons and see atomic positions

X-ray-matter interaction for x-ray absorption

Particle cartoon of x-ray beam

Classical cartoon of atom

Observe transitions of electrons from core states to valence states

- Sensitive to magnetism
- Losses the information you had in scattering

Resonant x-ray scattering

Electronic sensitivity + spatial information from scattering

$$\frac{d^2\sigma}{d\Omega d\omega}$$
 or $\frac{d\sigma}{d\Omega}$

N.b. Coherent quantum mechanical process

Why should you care about resonant scattering?

Magnetic order

Magnetic interactions

Orbital contrast

J. Sears et al., Nature Physics (2020)

D. Mazzone et al., Nature Comm. (2022)

C. Wang et al., APL (2005)

Magnetic Imaging

Electronic states

Advances (2022)

Pros and cons

Pros

- Highly selective: species orbital
- Versatile access to many degrees of freedom: charge, spin, lattice, orbital
- Applicable in extreme situations: small volumes, in-operando, ultrafast
- Extendable to imaging

Cons

- Challenging experiments
- Complex cross section

X-ray resonances

Energy levels of hydrogen (1)

Balmer series of emission lines from hydrogen

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_1^2}\right). \quad n = 1, 2, 3, \dots, n_2 > n_1$$

Discovery predates quantum mechanics

Energy levels of hydrogen (2)

 $\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$ n = 1,2,..., l = 0,1,...,n-1 m = -l,-l+1,...,l-1,l n: Principal quantum number l: Angular momentum quantum number m: Magnetic quantum number

Onto x-ray resonances

Spin orbit coupling J = L + S|L - S|, |L - S|+1, ..., |L + S|

Core hole notation $2p_{3/2}$

X-ray spectroscopic notation M₄ n=1, 2, 3 as K, L, M, ... Index low *L* to high *L*, then low *J* to high *J*

3d electron material

Types of transition

Dipole $\Delta L = \pm 1$ called E1 Quadrupole $\Delta L = \pm 2$ called E2 Etc.

Direct or "operator" RIXS

Indirect or "shakeup" RIXS

Energies of different resonances

A few words for the theorists

Which parts of the x-ray-matter interactions are involved here?

A theorist's perspective (1) Photon matter interactions

$$H_0 = H_e + H_{rad}$$

 $p \rightarrow p + eA$ $E = -\frac{\partial A}{\partial t}$

$$H = \frac{(\mathbf{p} + e\mathbf{A})^2}{2m} + H_{\text{rad}}$$
$$H = \frac{p^2}{2m} + \frac{e\mathbf{A} \cdot \mathbf{p}}{m} + \frac{e^2 A^2}{2m} + H_{\text{rad}}$$

$$H_{\text{int}} = \frac{eA \cdot p}{m} + \frac{e^2 A^2}{2m}$$

absorption scattering
ment et al., Rev. Mod. Phys. 83, 705 (2017)

Α

A theorist's perspective (2) Kramers-Heisenberg equation

$$\frac{d^{2}\sigma}{d\Omega d\omega} \propto \left| \langle f | H_{\text{int}} | i \rangle + \sum_{n} \frac{\langle f | H_{\text{int}} | n \rangle \langle n | H_{\text{int}} | i \rangle}{E_{i} - E_{n} + \hbar \omega_{i} + i\Gamma} \right|^{2}$$

$$1^{\text{st}} \text{ order} \qquad 2^{\text{nd}} \text{ order}$$

$$H_{\text{int}} = \frac{eA \cdot p}{m} + \frac{e^{2}A^{2}}{2m}$$

$$absorption \qquad \text{scattering}$$

$$1 \text{ photon} \qquad 2 \text{ photon}$$

Ament et al., Rev. Mod. Phys. 83, 705 (2011)

Connection between scattering and absorption (I)

$$\frac{d^2\sigma}{d\Omega d\omega} \propto \left| \langle f | H_{\text{int}} | i \rangle + \sum_n \frac{\langle f | H_{\text{int}} | n \rangle \langle n | H_{\text{int}} | i \rangle}{E_i - E_n + \hbar \omega_i + i\Gamma} \right|$$

$$H_{\rm int} = \frac{e\boldsymbol{A}\cdot\boldsymbol{p}}{m} + \frac{e^2A^2}{2m}$$

(a) Photoelectric absorption

2

1st order: $\frac{e\mathbf{A} \cdot \mathbf{p}}{m}$

(b) Thomson scattering

 $|a\rangle$

Resonant elastic scattering

$$\frac{d\sigma}{d\Omega} \propto \left| \langle i | H_{\text{int}} | i \rangle + \sum_{n} \frac{\langle i | H_{\text{int}} | n \rangle \langle n | H_{\text{int}} | i \rangle}{E_{i} - E_{n} + \hbar \omega_{i} + i\Gamma} \right|^{2}$$

$$f(Q, E_i) = f^0(Q) + f'(E_i) + if''(E_i)$$

 $|n\rangle = |n\rangle = |n\rangle$ $(n) = \frac{e\mathbf{A} \cdot \mathbf{p}}{m}$

 $|a\rangle$

Elements of modern x-ray physics by Jens Als-Nielsen and Des McMorrow

Connection between scattering and absorption (II)

$$f(Q, E_i) = f^0(Q) + f'(E_i) + if''(E_i)$$

 $f^{0}(Q)$ Thompson scattering from all electrons $f'(E_i)$ Resonant scattering $f''(E_i)$ Resonant absorption

f'and f'' are related to oneanother

Instrumentation

Hard x-rays vs. soft x-rays Elastic vs. inelastic

Soft x-ray vs. hard x-ray

Hard x-rays have $\lambda \sim d$ in Si Bragg's law $n\lambda = 2d \sin \theta$

Soft x-rays have $\lambda \gg d$ in suitable crystals Grating equation $m\lambda = d_0(\sin \alpha + \sin \beta)$

Images: T. Matsushita, Photon Factory

Inelastic scattering (I) hard x-rays

Key issue: angular acceptance

Image: Y. Cao et al., Philos. Trans. R. Soc. A 377, 20170480 (2019)

Inelastic scattering (II) soft x-rays

Spherical variable line spacing grating

ISR NSLS-II

Hard x-ray REXS

Some other beamlines

P09 DESY Sector 6IDB APS I16 DLS

Example 1 was done with P09

Sector 27 APS

Hard x-ray RIXS

Some other beamlines

ID20 ESRF

Soft x-ray REXS

CSX NSLS-II

Some other beamlines

REIXS CLS Sector 29 APS BL 11 ALS I10 DLS

Soft x-ray RIXS

SIX NSLS-II

Some other beamlines: I12 DLS, ID32 ESRF

Example 1: REXS Spin direction in proximate Kitaev magnet

Kitaev magnetism in RuCl₃

J. Sears et al. Nature Physics 16, 837–840 (2020)

Azimuthal scan

Ru L-edge 2.8 keV.

$$\frac{d^2\sigma}{d\Omega d\omega} \propto |\epsilon_i \times \epsilon_f \cdot M|^2$$

J. Sears et al. Nature Physics 16, 837–840 (2020)

Example 2: RIXS Oxygen states in superconducting nickelates

Superconducting nickelates

Possible analogs of cuprate superconductors

Role of oxygen states

Strength of magnetism

D. Li et al., Nature 572, 624–627 (2019) G. Pan et al., Nature Materials 21, 160–164 (2022)

Relatively strong magnetic interactions

Substantial oxygen involvement

J. Li et al., Phys. Rev. Lett. 126, 087001 (2021) Y. Shen et al., Phys. Rev. X 12, 011055 (2022) 10

Ε

O 2p

Ε

O 1s

Extended versions of resonant scattering

REXS imaging

Nanobeam magnetic diffraction imaging of $Gd_3Fe_5O_{12}$ at Gd L₂ edge **A** Circular flipping ratio F_{cir}

P. Evans et al., Sci. Advances 6 eaba9351 (2022) Brookhaven National Laboratory

Ultrafast study of magnetism Sr₃Ir₂O₇

Magnetic state gets "stuck" in suppressed state

Spin-gap bottleneck?

D. Mazzone, D. Meyers, ... MPMD et al., PNAS 15, 601–605 (2021)

Conclusions

Resonant scattering uses x-ray core hole states to access important information that is inaccessible to regularray scattering

The technique is readily extensible and can be performed in imaging, time-resolved, and ultrafast modes

Feedback

Lecture – 9:45 – 10:45 Resonant elastic and inelastic scattering - Mark Dean https://forms.office.com/g/QR5WYreeUh

