Large Scale Structures Small Angle Scattering & Reflectometry

Rana Ashkar

Assistant Professor, Physics Department, Virginia Tech

Materials over Different Length Scales

From Ordered to Disordered systems

Neutrons show where atoms are...

Single Slit Diffraction

Crystal Diffraction

But what about soft materials and disordered systems??

Neutron Scattering Length Density

$$\rho = \frac{1}{volume} \sum_{i} b_{i} n_{i}$$

Neutron scattering lengths [fm]

$$N_{b_{H_2O}} = \frac{2b_H + b_o}{V_{H_2O}} = \frac{(5.81 - 3.74 \cdot 2) fm}{30 \text{\AA}^3}$$
$$N_{b_{H_2O}} = -0.56 \cdot 10^{10} \text{ cm}^{-2}$$
$$V_{H_2O} = \frac{M_{H_2O} \overline{V}_{H_2O}}{N_A}$$

← → C 🏦 🔒 https://www.ncnr.nist.gov/resources/activation/

NIST Center for Neutron Research

D2O at 1.11 g/cm³

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s Source X-rays: 1.542 Å = 8.042 keV

1/e penetration depth (cm)		Scattering le (10-	ength density ⁶ /A ²)	Scattering c (1/c	X-ray SLD (10 ⁻⁶ /A ²)		
abs	43867.850	real	6.393	coh	0.513	real	9.455
abs+incoh	7.306	imag	-0.000	abs	0.000	imag	-0.032
abs+incoh+coh	1.535	incoh	3.302	incoh	0.137		

Neutron transmission is 87.21% for 1 cm of sample (after absorption and incoherent scattering). Transmitted flux is 8.721e+7 n/cm²/s for a 1e8 n/cm²/s beam.

H2O at 1.00 g/cm³

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s Source X-rays: 1.542 Å = 8.042 keV

	1/e penetration depth (cm)		Scattering l (10	ength density ⁻⁶ /Å ²)	Scattering c (1/c	X-ray SLD (10 ⁻⁶ /Å ²)		
	abs	80.836	real	-0.561	coh	0.004	real	9.469
	abs+incoh	0.186	imag	-0.000	abs	0.012	imag	-0.032
ſ	abs+incoh+coh	0.177	incoh	20.693	incoh	5.366		

Neutron transmission is 0.462% for 1 cm of sample (after absorption and incoherent scattering). Transmitted flux is 4.616e+5 n/cm²/s for a 1e8 n/cm²/s beam.

Si at 2.33 g/cm³

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s Source X-rays: 1.542 Å = 8.042 keV

1/e penetration depth (cm)		Scattering le (10 ⁻	ength density ⁶ /A ²)	Scattering cross section (1/cm)		X-ray SLD (10 ⁻⁶ /Å ²)	
abs	210.460	real	2.074	coh	0.108	real	20.071
abs+incoh	201.965	imag	-0.000	abs	0.005	imag	-0.458
abs+incoh+coh	8.848	incoh	0.089	incoh	0.000		

Neutron transmission is 99.51% for 1 cm of sample (after absorption and incoherent scattering). Transmitted flux is $9.951e+7 n/cm^2/s$ for a $1e8 n/cm^2/s$ beam.

Neutron vs. X-rays

Remember that:

- □ Neutrons interact with matter through nuclear interactions while X-rays interact through electromagnetic interactions with the electron cloud of atoms.
- Neutron scattering is characterized by coherent and incoherent contributions to scattering. You will see later that coherent scattering depends on Q and thus informs about material structures, whereas incoherent scattering is Q independent.
- □ In structural measurements, incoherent scattering is undesirable and should be minimized.

The Power of Contrast Variation/Match

SLD is akin to the optical index of refraction. The ability to change contrast and selectively observe different components of a complex system is a powerful tool that can help solve key questions in advanced technologies and the machinery of life.

Machinery of Life is Complex (Building a predictive understanding of life processes)

Small Angle Scattering

Used to measure large objects (few nm's to $\sim 1 \mu m$)

Recall that :

 $\vec{Q} = \vec{k}' \cdot \vec{k}_0 = 2k_0 \sin \theta$ for elastic scattering and that

 $\lambda = 2\pi / k = 2\pi / (Q / 2\sin\theta) = 4\pi \sin\theta / Q$ so we can rewrite Bragg's law $\lambda = 2d \sin\theta$ as $d = 2\pi/Q$ or for small θ d $\approx \lambda/2\theta$

i.e. small Q => large length scales

Scattering at small angles probes large length scales

Typical scattering angles for SANS are $\sim 0.3^{\circ}$ to 5°

The Concept of Small Angle Scattering

The Concept of Small Angle Scattering

Data Processing in Small Angle Scattering

Isotropic Scattering \rightarrow Radial Averaging

Anisotropic Scattering \rightarrow Sector Averaging

SANS toolbox, B. Hammouda

What do SANS instruments look like?

The NIST 30m SANS Instrument Under Construction

SAXS/SANS Measures Particle Shapes and Interparticle Correlations

$$\frac{d\sigma}{d\Omega} = \langle b \rangle^{2} \int_{space} d^{3}r \int_{space} d^{3}r' n_{N}(\vec{r}) n_{N}(\vec{r}') e^{i\vec{Q}.(\vec{r}-\vec{r}')}$$

$$= \int_{space} d^{3}R \int_{space} d^{3}R' \langle n_{P}(\vec{R}) n_{P}(\vec{R}') \rangle e^{i\vec{Q}.(\vec{R}-\vec{R}')} \langle \left| (\rho - \rho_{0}) \int_{particle} d^{3}x \cdot e^{i\vec{Q}.\vec{x}} \right|^{2} \rangle_{orientation}$$

$$\frac{d\sigma}{d\Omega} = (\rho - \rho_{0})^{2} \left| F(\vec{Q}) \right|^{2} V_{P}^{2} N_{P} \int_{space} d^{3}R \cdot G_{P}(\vec{R}) \cdot e^{i\vec{Q}.\vec{R}}$$

where G_P is the particle - particle correlation function (the probability that there is a particle at \vec{R} if there's one at the origin) and $|F(\vec{Q})|^2$ is the particle form factor :

$$\left|F(\vec{Q})\right|^{2} = \frac{1}{V_{p}^{2}} \left\langle \left|\int_{particle} d^{3}x \cdot e^{i\vec{Q}\cdot\vec{x}}\right|^{2} \right\rangle_{orientation}$$

These expressions are the same as those for nuclear scattering except for the addition of a form factor that arises because the scattering is no longer from point-like particles

Scattering from Dilute Particle Suspensions

Scattered intensity per unit volume of sample = $I(\vec{Q}) = \frac{1}{V} \frac{d\sigma}{d\Omega} = \frac{1}{V} \left\langle \left| \int \rho(\vec{r}) e^{i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^2 \right\rangle$

For identical particles

$$I(Q) = \frac{N}{V} (\rho_p - \rho_0)^2 V_p^2 \left\langle \left| \frac{1}{V_p} \int_{particle} e^{i\bar{Q}.\bar{r}} d\bar{r} \right|^2 \right\rangle$$

contrast factor

particle form factor $|F(\vec{Q})|^2$

Note that
$$I(0) = \frac{N}{V} (\rho_p - \rho_0)^2 V_p^2$$

Particle concentration $c = NV_p/V$ and particle molecular weight $M_w = \rho V_p N_A$ where ρ is the particle mass density and N_A is Avagadro's number

so $I(0) = \frac{cM_w}{\rho N_A} (\rho_p - \rho_0)^2$ provides a way to find the particle molecular weight

Scattering from Spherical Particles

The particle form factor $\left|F(\vec{Q})\right|^2 = \left|\int_{V} d\vec{r} e^{i\vec{Q}\cdot\vec{r}}\right|^2$ is determined by the particle shape.

For a sphere of radius R, F(Q) only depends on the magnitude of Q :

$$F_{sphere}(Q) = 3V_0 \left[\frac{\sin QR - QR \cos QR}{(QR)^3} \right] = \frac{3V_0}{QR} j_1(QR) \rightarrow V_0 \text{ at } Q = 0$$

Thus, as $Q \rightarrow 0$, the total scattering from an assembly of uncorrelated spherical particles [i.e. when $G(\vec{r}) \rightarrow \delta(\vec{r})$] is proportional to the square of the particle volume times the number of particles.

For elliptical particles replace R by : $R \rightarrow (a^2 \sin^2 \vartheta + b^2 \cos^2 \vartheta)^{1/2}$ where ϑ is the angle between the major axis (a) and \vec{Q}

SANS/SAXS Data Fitting (1D)

www.sasview.org

SANS/SAXS Data Fitting (2D)

www.sasview.org

ew - Fitting -					-			
t <u>View Analysis</u> <u>Tool</u> Fitting	<u>G</u> raph <u>H</u> elp							
i 🖡 n n 🗉 🛄	Bookmarks • FitPage	1						
rer X	FitPage1 FitPage3 Fit	Page4 FitPage5	FitPage	6 ×			Graph6	
Options	Cyindermodel	I too who inone		•]			SSRHE062.DAT	1 E.
all Data 🔹							0.015	3.3
	Model Parameters						0.010	-2.
AnnulusPhi(SSRHE062_out.txt	Select All Value	Min	Max [Units]			- 0.005	-2.
JUL08473.DAT	background .3		t	1/cm]			< 0.000 d ² =0.005	-1.
SSRHE062.DAT	length 15000		t,	A]			-0.010	1.
SSRHE064.DAT	scale .037						-0.015	0.
	✓ radius 500		Ū.	A]			-0.00.00.00.00.00.00.00.00.00.00.00.00.0	5 0.
	SidCyl 5.7e-06		[1/A^(2)]			$Q_s(A^{-1})$	
	sldSolv 6.3e-06		[1/A^(2)]				
	Mar. 20 - 13							
	[For 2D only]:		[0	deg]			Graph14	
	Cyl theta 90	_	- Ie	deal			0.020 M6 [SSRHE062.DAT	1
						-	0.015	2.
M4 [Model]	Polydispersity and Orientatio	nal Distribution					0.010	2.
	🖲 On 💿 Off	2					() 0.005	-1.
		PD[ratio], Sig[deg]	Min	Max Npts	s Nsigs	Function	≤ 0.000	-1.
	Distribution of length	0		35	3	gaussian 💌	-0.010	0.
	Distribution of radius	.4	1	35	3	gaussian 💌	-0.015	0.
	-						-0.02015000500050001	5
	Distribution of cyl. theta	0	-	35	3	naussian 💌	$= Q_x(A^{-1})$	
		M& Modell out t	-					
		[array		
Data	Fitting						Graph15	
Data	Set Instrumental Smearing			0.020	OZ.DATJ			
	Vivone Use ou use ou use on unoie smear Use ou use of the other of the other of the other of the other othe						0.015	24
ineory	Cabillai dhiine hu Calastine	No smearing is selected				2	0.010	-18
Plot	No Weighting O Us	e di Data 💿 Use	sqrt(I Data)) OUse II	Data]		× 0.005	- 12
Plot To Graph 10 🔹		and an				9	o ⁶ -0.005	- 0
To Fitting •	Q range Min[1/A] Max[1/A] Masking(2D)				-0.010	-		
Single Mode	Reset 0 0.0290289188 Editor						-0.015	-1
Batch Mode	Chi2/Nots Nots/Fit) Total Nots -						-0.020000000000000000000000000000000000	5
	Compute					$Q_x(A^{-1})$		
	2.3255 16220	16384		Fit			. 🗉 🔕 🐼 🖍 🔚 🖶 🗕	
	1							

Tips for SANS/SAXS Measurements

- Simulate the reflectivity profiles that you expect to see
 - Make sure you can see the effect that you are looking for (Be mindful about layer thicknesses – extremes are challenging to resolve)
 - Choose the best substrate
 - Choose the right contrast conditions
- ☐ Make sure you have high quality samples
 - Low surface roughness
 - Beware of lateral imperfections (large islands, partial surface coverage)
 - ➢ If possible, try to do complimentary characterization (AFM, TEM, ...)
- Choose the right instrument & scattering geometry
 - For samples with rough surfaces or in fluid environments, consider incidence through substrate (beam attenuation, diffuse scattering, ...)
 - For free surface or interface measurements of fluids, you need an instrument with a horizontal sample geometry
 - Check that the instrument has the right specs (resolution, q-range, ...)

From Bulk Materials to Surfaces and Interfaces: How do we study matter in thin films and buried structures?

Reflection from Surfaces and Interfaces Consider neutrons of $\lambda = 5$ Å incident on silicon: $\rho_{si} = 2.07 \times 10^{-6}$ Å⁻² $\frac{E}{V} = \frac{\pi}{\rho\lambda^2} \sim 10^4 \quad \text{Highly penetrating}$ Grazing Incidence!! small angle approximation $k_{\perp} = \frac{2\pi}{\lambda} \sin \theta \sim \frac{2\pi}{\lambda} \theta$ V $E_{\perp} = \frac{\hbar^2 k_{\perp}^2}{2M} = \frac{\hbar^2}{2M\lambda^2} \theta^2 \implies V = \frac{2\pi\hbar^2\rho}{M} \implies \theta_c = \lambda\sqrt{\frac{\rho}{\pi}}$ **Example:** $\theta_c (\text{Si} @ 5\text{\AA}) = 0.23^\circ$ For $\theta = 0.2^\circ$ $\longrightarrow \frac{E_{\perp}}{V} = \frac{\pi}{O\lambda^2} \theta^2 \sim 10^{-1}$

Types of Grazing Incidence Scattering

α,

 $Q = Q_{\perp} \sim 1 \text{ nm}^{-1}$

Specular reflectometry Depth profiles (nuclear and/or magnetic)

Off-specular (diffuse) scattering In-plane correlated roughness Magnetic stripes Phase separation (polymers)

Glancing incidence diffraction Ordering in liquid crystals Atomic structures near surfaces Interactions among nanodots

Λ~0.1-100nm

Λ~20Å 3

У

Slide courtesy of M. Fitzsimmons

Refractive Index

The kinetic (and total) energy of neutron in vaccuum is $E = \frac{\hbar^2 k_0^2}{2m}$ Inside the medium the total energy is $\frac{\hbar^2 k^2}{2m} + \overline{V}$ Conservation of energy gives $\frac{\hbar^2 k_0^2}{2m} = \frac{\hbar^2 k^2}{2m} + \overline{V} = \frac{\hbar^2 k^2}{2m} + \frac{2\pi\hbar^2}{m}\rho$ or $k_0^2 - k^2 = 4\pi\rho$

Since $k/k_0 = n$ = refractive index (by definition), and ρ is very small (~10⁻⁶ A⁻²) we get : $n = 1 - \lambda^2 \rho / 2\pi$ $n = 1 - \delta - i\beta$

- □ Small difference in refractive index imply that critical angles are small (less than 1 degree)
- □ Since generally n < 1, neutrons are externally reflected from most materials
- Mixtures of isotopes can be used to match the index of refraction of different materials
- \Box Absorption coefficient β is small for neutrons

X-RAYS

 $\delta = \frac{\lambda^2}{2\pi} r_e \rho$

 $\delta = \frac{\lambda^2}{\rho_n}$

Quantum Description of Reflection

Schrödinger equation: $\nabla^2 \psi(\vec{r}) + (k_0^2 - 4\pi\rho(\vec{r}))\psi(\vec{r}) = 0$

Continuity of the wavefunction and its derivative at the interface directly yields the classical Fresnel coefficients:

$$r = \frac{k_{i\perp} - k_{t\perp}}{k_{i\perp} + k_{t\perp}} \qquad \& \qquad t = \frac{2k_{i\perp}}{k_{i\perp} + k_{t\perp}}$$

Fresnel Reflection

The reflectivity, *R*, is usually measured or calculated as a function of the wave vector transfer $\vec{q} = \vec{k}_f - \vec{k}_i$

$$R_{exp} = \frac{\# \text{ reflected neutrons at a given } q}{\# \text{ incident neutrons}}$$

$$R_F = r.r^* = \left|r^2\right| = \left|\frac{q - (q^2 - q_c^2)^{1/2}}{q - (q^2 - q_c^2)^{1/2}}\right|^2$$

$$q_c = \sqrt{16\pi\rho}$$
Born Approximation (q >> q_c)
$$R_F = \frac{16\pi^2\rho^2}{q^4}$$

Ignoring double scattering processes because they are usually very weak

Fresnel Expression from a Thin Film

$$r = \frac{r_{01} + r_{12}e^{i2k_{1z}t}}{1 + r_{01}r_{12}e^{i2k_{1z}t}}$$
$$R_F = |r^2|$$

- □ If the film has a higher scattering length density than the substrate, the reflectivity pattern is above Fresnel prediction
- □ If the film scattering is weaker than that of the substrate, the green curve is below Fresnel prediction

 \Box The fringe spacing at large q_z is $\sim 2\pi/t$

Fresnel Expression for Multilayers (Parratt Formalism)

 n_2

 n_N

R,

 T_{j+1}

 R_N

 R_{a}

 R_{i-1}

 R_{i+1}

 R_{N-1}

 T_N

 T_N

 d_2

 d_i

 d_N

vacuum

layer 2

.

layer

layer N

layer N+1

$$X_{j} = \frac{R_{j}}{T_{j}} = e^{-2ik_{z,j}z_{j}} \frac{r_{j,j+1} + X_{j+1}e^{2ik_{z,j+1}z_{j}}}{1 + r_{j,j+1}X_{j+1}e^{2ik_{z,j+1}z_{j}}}$$

 $T_{1} = 1$

 R_{s}

 T_{N-1}

RN

 α_i

 $z_1 = 0$

 z_{z}

 $\boldsymbol{z_{j-1}}$

 z_j

 z_{N-1}

 z_N

$$R_F = \left| R_1^2 \right|$$

Slicing of Density Profile

- Any complex SLD depth profile can be "sliced" into thin films
- □ The Parratt formalism allows calculation of reflectivity
- The computation is more intensive for thinner slices

Rough and Diffuse Interfaces

- Surface roughness causes diffuse (non-specular) scattering and reduces the magnitude of the specular reflectivity
- The damping of the specular reflection depends on the length scale, magnitude, and distribution of roughness
- □ The signal is modified by the Nevot-Croce term:

 $R \approx R_F e^{-q_z^2 \sigma^2}$

□ This term applies equally well to diffuse interfaces

General Notes on Reflectivity Patterns

Specular reflection

Mashaghi et al., Chem. Soc. Rev., 2014, 43, 887-900

□ Rough or patterned surfaces can cause diffuse or offspecular scattering

□ Flat, homogeneous, smooth surfaces result in specular reflection

- Below the critical angle \rightarrow total specular reflection
- Above the critical angle → reflectivity patterns depend on the SLD profile normal to the surface

Effects of Instrumental Resolution

 $\square Reflectivity drops quickly with increasing Q (or angle).$

□ Signal is easily 'lost' in background

- □ To observe fringes → measure over an appropriate range of Q and sufficient resolution (∆Q small enough).
- Attenuation caused by scattering or absorption may be significant

Data Fitting and Fitting Software

Courtesy of Roger Pynn

Reflpak, Refl1D <u>https://www.ncnr.nist.gov/reflpak/</u>

- ❑ SasView Reflectometry package <u>www.sasview.org</u>
- Motofit <u>https://sourceforge.net/projects/motofit/</u>

Phase Problem & Perils of Data Fitting

- □ Lack of phase information means that profoundly different scattering length density profiles can produce strikingly similar reflectivity patterns.
- Ambiguities may be resolved with additional information through the use of complementary characterization techniques (e.g. TEM, X-ray) or simulations, acquiring high-quality neutron data, and applying D. Sivia et al., J. Appl. Phys. 70, 732 (1991).

Ways around the Phase Problem

Complementary characterization & model refinement;
 e.g. using NMR data and computer simulations –
 Electrostatic Interactions and Binding Orientation of HIV-1
 Matrix. Nanda et al., *Biophys. J.* 2010 99(8): 2516–2524.

- Combine measurements using x-ray and neutron reflectometry and apply simultaneous model fits – Structure of PEGylated lipid monolayers

Majewski et al., J. Phys. Chem. B 1997, 101 (16), 3122-3129.

Apply contrast variation using isotope labeling

 AmB effect on P. Pastoris yeast membranes
 Ghellinck et al., *Biochim. Biophys. Acta* 2015, 1848 (10), 2317–2325.

- Use polarized beams and magnetic reference layers; i.e. equivalent of nuclear and magnetic contrasts.
 - High resolution protein adsorption profile with no labeling Holt et al., Soft Matter. 2009, 5(13), 2576.

Tips for Reflectivity Measurements

- ☐ Simulate the reflectivity profiles that you expect to see
 - Make sure you can see the effect that you are looking for (Be mindful about layer thicknesses – extremes are challenging to resolve)
 - Choose the best substrate
 - Choose the right contrast conditions
- ☐ Make sure you have high quality samples
 - Low surface roughness
 - Beware of lateral imperfections (large islands, partial surface coverage)
 - ➢ If possible, try to do complimentary characterization (AFM, TEM, ...)
- Choose the right instrument & scattering geometry
 - For samples with rough surfaces or in fluid environments, consider incidence through substrate (beam attenuation, diffuse scattering, ...)
 - For free surface or interface measurements of fluids, you need an instrument with a horizontal sample geometry
 - Check that the instrument has the right specs (resolution, q-range, ...)

Reflectometer Geometries

Neutron Reflectometers at SNS

Liquids Reflectometer (BL-4B)

- Vertical scattering plane (compatible with liquid-air and liquid-liquid interfaces)
- □ Langmuir trough
- □ Rheometer
- □ Fluid sample cells

Magnetism Reflectometer (BL-4A)

- □ Horizontal scattering plane
- □ Magnetic samples
- □ 1.15T electromagnet and temperature control (5K to 750K)
- □ Polarization capabilities

Useful References

- □ V. F. Sears 'Neutron Optics', Oxford Press, Oxford (1989)
- Lekner J (1987) in: "Theory of Reflection" Martinus Nijhoff Dordrecht
- Born M and Wolfe E (1989) in: "Principles of Optics" Pergamon Press Eds. Oxford
- Denfold J and Thomas R K (1990) J. Phys. Condens. Matter 2 1369
- **Q** Russell T. P. (1990) *Mat. Sci. Rep.* **5** 171
- General General General Phys. Rev. B 24 1995
- □ Sinha S K, Sirota E B, Garoff S and Stanley H B (1998) Phys. Rev. B 38 2297
- □ Pynn R (1992) *Phys. Rev. B* **45**, 602
- □ Pynn R, Baker S, Smith G, Fitzsimmons M (1999) J. Neutron Res. 7, 139-158
- □ Zhou X-L and Chen S-H (1995) *Phys. Rep.* **257** 223
- □ Williams W "Polarized Neutrons", Oxford Press, Oxford (1989)
- □ Névot L and Croce P (1990) *Rev. de Phys. Appl.* **15** 761
- Daillant J and Gibaud A (1999) in: "X-ray and Neutron Reflectivity: Principles and Applications" Springer Eds.