A Survey of Inelastic Neutron Scattering

Properties of the neutron

The neutron scattering cross section The triple axis spectrometer

Phonons

Time-of-flight spectrometry

- Experimental details

Bruce D. Gaulin
McMaster University

Brockhouse Institute for Materials Research

The Neutron as a Wave

Energy, wave vector, wavelength, velocity :

$$
\begin{aligned}
& k=\frac{m_{n} v}{\hbar}=\frac{2 \pi}{\lambda} \quad E=k_{B} T=0.08617 \mathrm{mev} \cdot K^{-1} \times T \\
& E=\frac{\hbar^{2} k^{2}}{2 m_{n}}=\frac{\hbar^{2}}{2 m_{n}}\left(\frac{2 \pi}{\lambda}\right)^{2}=\frac{81.81 \mathrm{mev} \cdot \AA^{2}}{\lambda^{2}}
\end{aligned}
$$

Neutrons with λ typical of interatomic spacings (~ 2 Å) have energies typical of elementary excitations in solids ($\sim 20 \mathrm{meV}$)

What are we typically trying to understand?

Bragg's law: $n \lambda=2 d \sin (\theta)$
$\mathrm{La}_{2} \mathrm{CuO}_{4}$

- Cu^{2+}
$0 \quad \mathrm{O}^{2-}$
$\bigcirc \mathrm{O}^{2-}$
(La^{3+}

What is the atomic and magnetic structure of new materials? What are the dynamic properties of the atoms and the magnetic moments?
How are structure and dynamics related to physical properties?

The Basic Neutron Scattering Experiment

- Monochomatic
- "White"
- "Pink"
- Resolve its energy
- Don't resolve its energy
- Filter its energy

Fermi's Golden Rule

within the lIst Born approximation

$$
\begin{gathered}
\left.W=\frac{2 \pi}{\hbar}|\langle f| V| i\right\rangle\left.\right|^{2} \rho\left(\boldsymbol{E}_{f}\right) \\
\left.\partial \sigma=\frac{W}{\Phi}=\frac{m}{\left(2 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}|\langle f| V| i\right\rangle\left.\right|^{2} \partial \Omega \\
\frac{\partial^{2} \sigma}{\partial \Omega \partial E_{f}}=\frac{\boldsymbol{k}_{f}}{\boldsymbol{k}_{i}} \frac{\sigma_{\text {coherent }}}{4 \pi} N S_{\text {coherent }}(\vec{Q}, \hbar \omega)
\end{gathered}
$$

Correlation Functions

Pair correlation function

$$
G(\vec{r}, t)=\frac{1}{N} \int \sum_{j, j^{\prime}} \delta\left(\overrightarrow{r^{\prime}}-R_{j^{\prime}}(0)\right) \delta\left(\overrightarrow{r^{\prime}}+\vec{r}-\vec{R}_{j}(t)\right) d r^{\prime}
$$

Intermediate function

$$
I(\vec{Q}, t)=\int G(\vec{r}, t) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}=\frac{1}{N} \sum_{j, j^{\prime}} e^{-i \vec{Q} \cdot \vec{R}_{j^{\prime}}(0)} e^{i \vec{Q} \cdot \vec{R}_{j}(t)}
$$

Scattering function

$$
S(\vec{Q}, \hbar \omega)=\frac{1}{2 \pi \hbar} \int I(\vec{Q}, t) e^{-i \omega t} d t
$$

Correlation Functions

Pair correlation function

$$
G(\vec{r}, t)=\frac{1}{N} \int \sum_{j, j^{\prime}} \delta\left(\overrightarrow{r^{\prime}}-R_{j^{\prime}}(0)\right) \delta\left(\overrightarrow{r^{\prime}}+\vec{r}-\vec{R}_{j}(t)\right) d r^{\prime}
$$

Intermediate function

$$
I(\vec{Q}, t)=\int G(\vec{r}, t) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}=\frac{1}{N} \sum_{j, j^{\prime}} e^{-i \vec{Q} \cdot \vec{R}_{j^{\prime}}(0)} e^{i \vec{Q} \cdot \vec{R}_{j}(t)}
$$

Scattering function

$$
S(\vec{Q}, \hbar \omega)=\frac{1}{2 \pi \hbar} \int I(\vec{Q}, t) e^{-i \omega t} d t
$$

Neutrons scatter off nuclei

Neutrons "see" nuclei and magnetism

X-rays -
electromagnetic radiation "see" electrons

Dipole moment of the neutron interacts with the magnetic field generated by the electron

$$
\mu_{\mathrm{n}}=-\gamma \mu_{\mathrm{N}} \sigma
$$

$\gamma=1.913 \quad$ nuclear magneton $=e \hbar / 2 m_{n} \quad$ Pauli spin operator

Dipole field due to orbital currents

Diffraction in Momentum (Q) space

In momentum space,
 our sample is represented
 by its reciprocal lattice

$\underbrace{\bullet}_{\underbrace{\frac{2 \pi}{a}}}$

Diffraction in Momentum (Q) space

Origin of reciprocal space

Remains
fixed for
all sample
orientations

Diffraction in Momentum (Q) space

Bragg diffraction

constructive interference when

$$
\vec{Q}=\vec{k}_{i}-\vec{k}_{f}=\vec{\tau}
$$

$=\mathbf{a}$ reciprocal lattice vector

Diffraction in Momentum (Q) space

Bragg diffraction

constructive

 interference when
$\vec{Q}=\overrightarrow{\boldsymbol{k}}_{i}-\overrightarrow{\boldsymbol{k}}_{f}=\vec{\tau}$
 = a reciprocal lattice vector

Elementary Excitations

Momentum $\mathbf{Q}=\mathbf{k}_{\mathbf{i}}-\mathbf{k}_{\mathbf{f}}$

Phonon Polarizations

$0000^{00000} 0$

Transverse Acoustic

Transverse Optic

Phonon eigenvectors and eigenvalues

$\hbar \omega$

Momentum $\mathbf{Q}=\mathbf{k}_{\mathrm{i}}-\mathbf{k}_{\mathbf{f}}$

Phonons in 3D

Lynn, et al., Phys. Rev. B 8, 3493 (1973).

Dogeroger

are.e.0.a.ero.

FCC Brillouin zone

Phonons in more complicated 3D structures

Woods, et al., Phys. Rev. 131, 1025 (1963).

KBr - two atoms/unit cell

3 acoustic phonon branches 3 optic phonon branches

$\mathrm{La}_{2} \mathrm{CuO}_{4}$ many atoms/unit cell

3 acoustic phonon branches 3n-3 = many optic phonon branches

Brockhouse's Triple Axis Spectrometer

Betram N. Brockhouse, MdNater University, Hamilton, ontario Canadas ocaves on in Pherice for the demelopmen of neutron spectroscop

Brockhouse's Triple Axis Spectrometer

Betram N. Brockhouse, MdNater University, Hamilton, Ontanio in Phosice for the demelopment of neutron क्राroscopr

$$
\left|k_{f}\right|=\frac{2 \pi}{\lambda_{f}}
$$

$\left|k_{i}\right|=\frac{2 \pi}{\lambda_{i}}$

Brockhouse's Triple Axis Spectrometer

Two different ways of performing constant-0 scans

$$
\mathbf{Q}=\mathbf{k}_{\mathbf{i}}-\mathbf{k}_{\mathbf{f}}
$$

$\mathbf{Q}=$ Constant $\mathbf{k}_{\mathbf{f}}$

$\mathbf{Q}=$ Constant $\mathbf{k}_{\mathbf{i}}$

Mapping Momentum (Q) and Energy ($\hbar \omega$) space

Origin of reciprocal space

Putting the Q-map of the scattering with the reciprocal lattice of the crystal

Putting the Q-map of the scattering with the reciprocal lattice of the crystal

Constant-Q triple axis data

Constant-E triple axis data

Elastic scattering with a Triple Axis Spectrometer

Betram N. Brockhouse, MdNater University, Hamilton, half of the 1994 Nobed Prize in Physics for the development of neutron spectrosopy.

$$
\left|k_{f}\right|=\left|k_{i}\right|=\frac{2 \pi}{\lambda_{i}}
$$

Two Axis "Spectrometer" integrates over k_{f} : diffraction

$$
\left|k_{i}\right|=\frac{2 \pi}{\lambda_{i}}
$$

Betram N. Brockhouse, MdNater University, Hamilton, Ontario, Canada, recelves on
half of the 1594 Nobed Prize in Physics for the deredopment of neutron qectroscopy.

The assumption is often made that the scattering is elastic but, this is an assumption!

The coherent neutron scattering cross section for phonons

$$
S(\vec{Q}, \hbar \omega)=\frac{1}{2 N M} e^{-Q^{2}\left\langle u^{2}\right\rangle} \sum_{j, \vec{q}}\left|\vec{Q} \cdot \vec{\varepsilon}_{j}(\vec{q})\right|^{2} \frac{1}{\omega_{j}(\vec{q})}
$$

The displacement (eigenvectors) of the atoms must be // to the momentum transfer

$$
\times(1+n(\hbar \omega)) \quad \delta(\vec{Q}-\vec{q}-\vec{\tau}) \quad \delta\left(\hbar \omega-\hbar \omega_{j}(\vec{q})\right)
$$

The neutron can always create a phonon, but it cannot destroy a phonon unless
one is already present

The coherent neutron scattering cross section for phonons

Longitudinal scan, $\mathbf{q} \| \varepsilon$

Transverse scan, $\mathbf{q} \perp \varepsilon$

$$
S(\vec{Q}, \hbar \omega)=\frac{1}{2 N M} e^{-Q^{2}\left\langle u^{2}\right\rangle} \sum_{j, \vec{q}}\left|\vec{Q} \cdot \vec{\varepsilon}_{j}(\vec{q})\right|^{2} \frac{1}{\omega_{j}(\vec{q})}
$$

$$
\times(1+n(\hbar \omega)) \delta(\vec{Q}-\vec{q}-\vec{\tau}) \quad \delta\left(\hbar \omega-\hbar \omega_{j}(\vec{q})\right)
$$

The coherent neutron scattering cross section for phonons

Longitudinal scan, $\mathbf{q} \| \varepsilon$

Transverse scan, $\mathbf{q} \perp \varepsilon$

$$
S(\vec{Q}, \hbar \omega)=\frac{1}{2 N M} e^{-Q^{2}\left\langle u^{2}\right\rangle} \sum_{j, \bar{q}}\left|\vec{Q} \cdot \vec{\varepsilon}_{j}(\vec{q})\right|^{2} \frac{1}{\omega_{j}(\vec{q})}
$$

Time-of-flight Neutron Scattering

Neutrons have mass
so higher energy means faster - lower energy means slower

$$
\mathrm{v}(\mathrm{~km} / \mathrm{sec})=3.96 / \lambda(\mathrm{A})
$$

We can measure a neutron's energy, wavelength by measuring its speed

Time-of-flight Neutron Scattering

detector banks

Time

$$
t=\frac{d}{v}=\left(\frac{m d}{h}\right) \lambda
$$

Time-of-flight Neutron Scattering

4D data sets for single crystals can be very large ~ 2 Tbyte

Time-of-flight Neutron Scattering: Disc Choppers

A single (disk) chopper pulses the neutron beam.

Counter-rotating choppers (close together), with speed \bullet, behave like single choppers with speed $2 *$. They can also permit a choice of pulse widths.

A second chopper selects neutrons within a narrow range of speeds.

Additional choppers remove "contaminant" wavelengths and reduce the pulse frequency at the sample position.

Time-of-flight Neutron Scattering: Disc Choppers

The DCS has seven choppers, 4 of which have 3 "slots"

Disk 4B

Time-of-flight Neutron Scattering: Fermi Choppers

Resolution Considerations

Resolution "ellipse" is defined by:

- Beam divergences - Collimation and distances - Crystal mosaic, sizes \bullet Beam energy

$I\left(\vec{Q}_{0}, \hbar \omega_{0}\right)=\int S\left(\vec{Q}_{0}-\vec{Q}, \hbar \omega_{0}-\hbar \omega\right) R\left(\vec{Q}_{0}, \hbar \omega_{0}\right) d \vec{Q} d \hbar \omega$

Resolution focussing

Resolution focussing

Resolution focussing

Resolution focussing

Neutron Detectors

Gas Detectors

- $\mathrm{n}+{ }^{3} \mathrm{He} \rightarrow{ }^{3} \mathrm{H}+\mathrm{p}+0.764 \mathrm{MeV}$
- ionization of gas
- high efficiency

Neutron Kinetic Energy [meV]

Beam monitors

- low efficiency detectors for monitoring

beam flux

Q or angular resolution improved by using collimation (Soller slits)

Soller slit collimators

 neutron channels with absorbing walls
resolution of $\mathbf{k}_{\mathbf{i}}, \mathbf{K}_{\mathbf{f}}$ to be selected

Harmonic contamination from crystal monochromators

Neutron filters remove λ / n from incident or scattered beam, or both.

Harmonic contamination from crystal monochromatorss Pyrolitic Graphite

