

X-RAY ABSORPTION SPECTROSCOPY (XAS)

SHELLY D KELLY Spectroscopy Group Leader Advanced Photon Source SPC Group: Yanna Chen, Steve Heald, Juanjuan Huang, Debora Motta Meira, Mike Pape, Aleks Solovyev, George Sterbinsky, Chengjun Sun, Mark Wolfman

July 29, 2024 26th National School on Neutron and X-ray Scattering

OUTLINE

- Background X-ray absorption spectroscopy (XAS)
- X-ray absorption near edge spectra (XANES) process
- XANES examples
- Extended X-ray absorption fine structure (EXAFS) fundamentals
- EXAFS examples

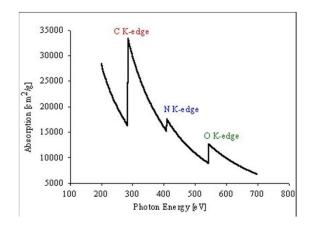
1920 PUBLISHED ABSORPTION EDGES

The K-characteristic absorption frequencies for The chemical elements magnesium to chromium. By Hugo Fricke

Synopsis

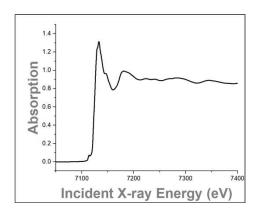
Absorption of X-rays. -This paper contains an account of an experimental investigation concerning the discontinuity in the x-ray absorption corresponding to the K-series for the chemical elements from magnesium to chromium inclusively. The method followed was the same as that devised and employed by de Broglie. A specially designed vacuum

Fine Structure of Absorption. – The spectrograms show that the discontinuity has a rather complex structure, a result in advance of those obtained by earlier investigators. A photometric study of the plates was made in order to obtain a more accurate knowledge of the detailed structure of the absorption limits.


Results. These are recorded in tables which give for each element the wave-lengths of the different remarkable points in the structure of the discontinuities. The theoretical bearing of the new observations is briefly discussed.

3 https://journals.aps.org/pr/pdf/10.1103/PhysRev.16.202 Argonne 📤

THE DISCONTINUITY IN THE X-RAY ABSORPTION **CORRESPONDING TO THE K-SERIES**



John (https://physics.stackexchange.com/users/101660/john), Why do we have the $absorption\ edge \ref{eq:com/q/238105} absorption\ edge \ref{eq:com/q/238105}. Https://physics.stackexchange.com/q/238105$

ENERGY U.S. Department of Energy is a U.S. Department of Energy isboratory managed by U.Chicago Argonne, LLC.

Argonne 📤

THE DISCONTINUITY HAS A RATHER COMPLEX STRUCTURE

ENERGY U.S. Department of Energy lis a U.S. Department of Energy lisboratory managed by UChicago Argenne, LLC.

Ę

1971 UNDERSTANDING OF EXAFS

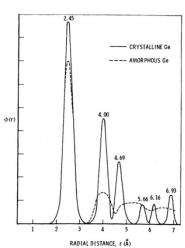
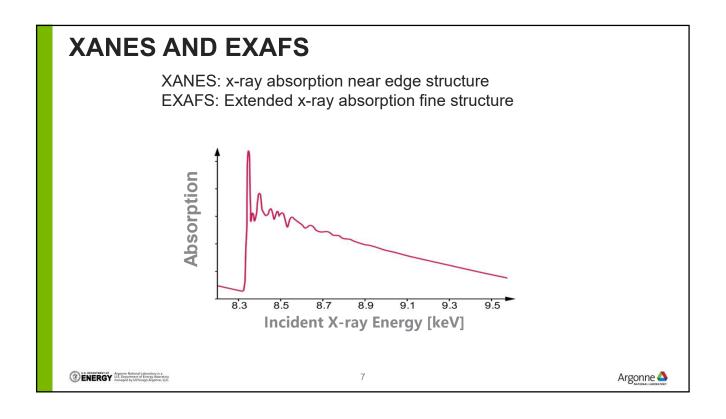
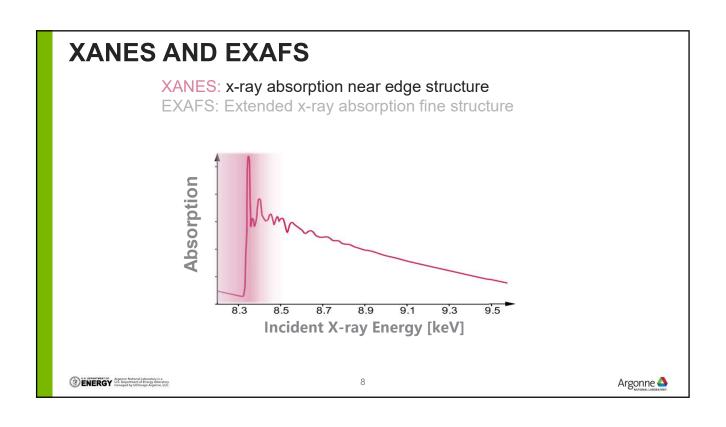
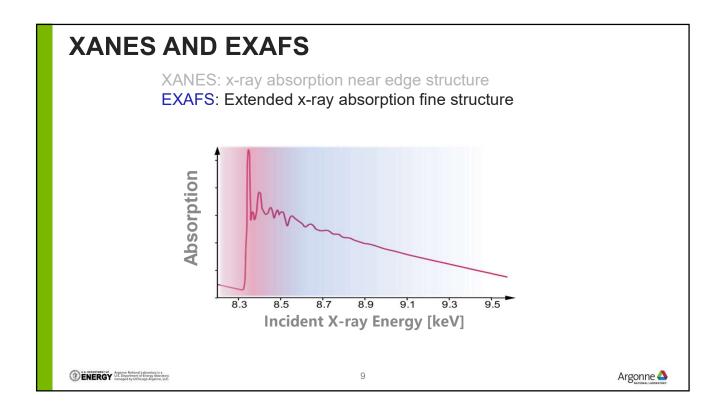


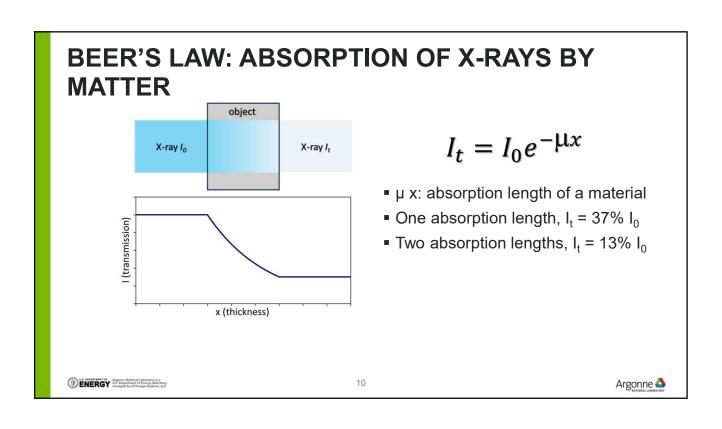
FIG. 2. Fourier transformation of the data of Fig. 1. $\varphi(r)$, a radial structure function, compares amorphous and crystalline Ge. Numbers over the peaks indicate the measured distances in Å.

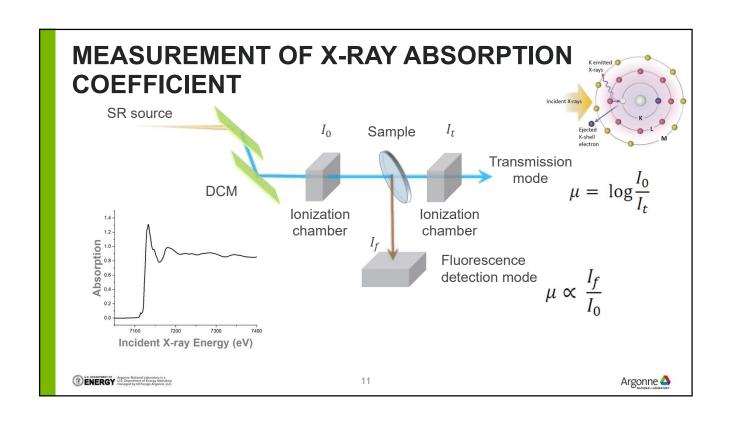
New Technique for Investigating Noncrystalline structures: Fourier Analysis of the Extended X-ray – Absorption Fine Structure

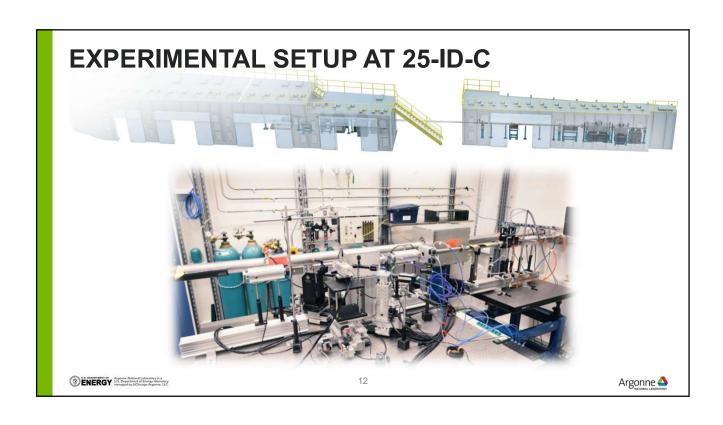

Dale E. Sayers, Edward A. Stern and Farrel W. Lytle
Physical Review Letters 1971

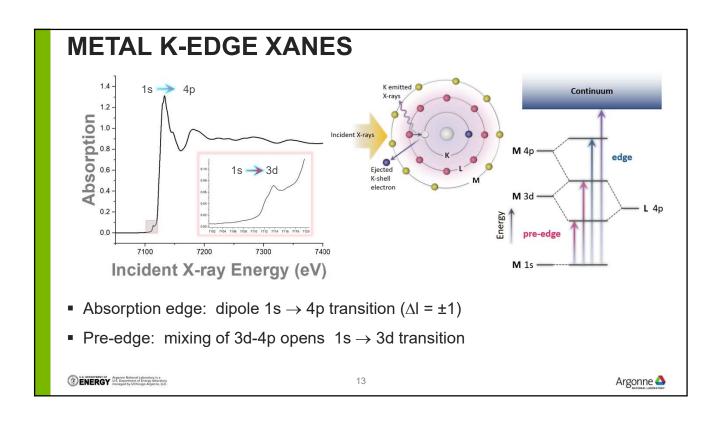

https://link.aps.org/doi/10.1103/PhysRevLett.27.1204

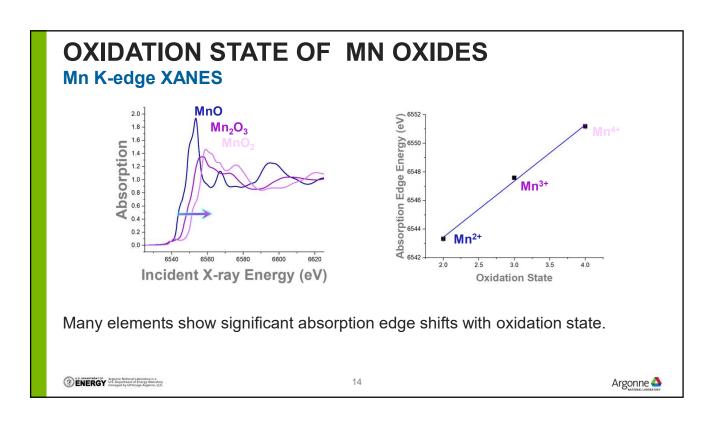

ENERGY U.S. Department of Energy is a u.S. Department of Energy is boretory managed by UChicago Argenne, LLC.

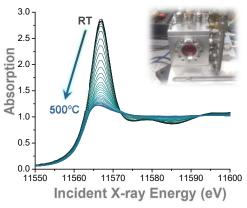

6

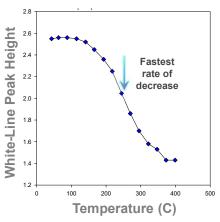










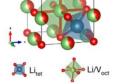


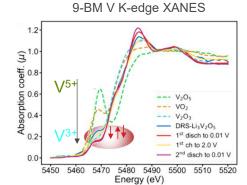
PT XANES DURING IN SITU REDUCTION

Direct in situ measurement of Pt reduction

- Pt L₃-edge p->d transition
- Pt electrons: [Xe]4f¹⁴5d⁶s¹
- · Pt white line intensity decreases as temperature increases due to 5d electrons filling
- Rate of decrease is fastest at ~270°C.

U.S. Department of Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

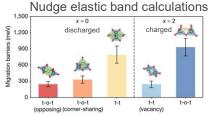

Argonne 📤


FAST-CHARGING LITHIUM-ION BATTERIES

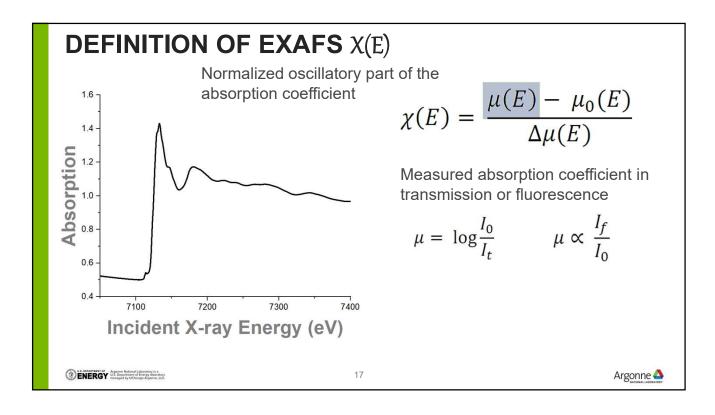
Haodong Liu, et al., Nature, 2020

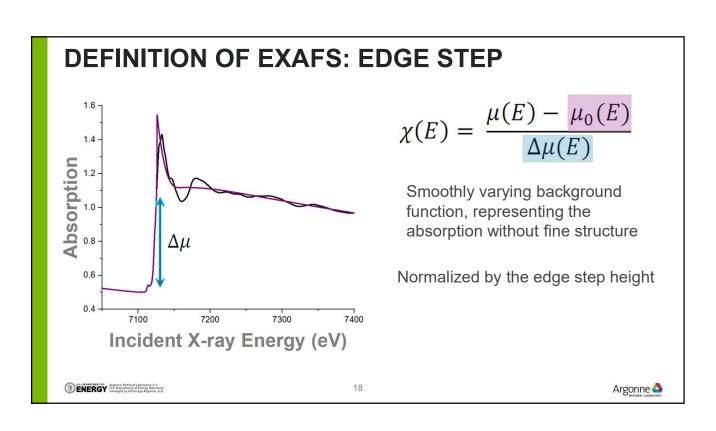
Unique disordered rock salt (DRS) anode reversibly cycles two Li+ at a low 0.6 volts verse a Li/Li+ reference cathode reducing the short-circuit risk due to Li dendrite growth. 40% capacity can be delivered in 20 seconds!

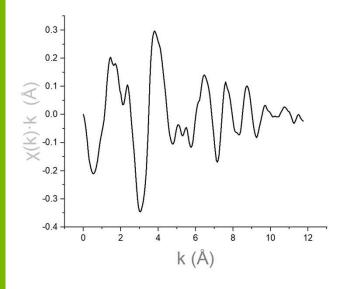
High performance is due to Li intercalation mechanism with low energy barriers and small volume change which cause V to change oxidation state.



Low energy range at 9-BM enables V K-edge XANES spectra to confirm oxidation state changes with charge and discharge. V in pristine DRS is mixture of V4+ and V3+, after discharge the V oxidation state is less than V3+, oxidation state switches back and forth during the 1st charge and 2nd discharge showing highly reversible V oxidation state change.


The team includes 26 authors with expertise in electrode chemistry, materials synthesis, neutron diffraction, in-situ XRD ICP-OES, STEM, XAS, SEM, XPS, and DFT.


Argonne
A


T-O-T Li+ in t-site hops to neighboring occupied o-site, and Li in o-site hops to empty t-site. T-O-T Li+ in t-site hops through and empty Osite to another t-site

ENERGY U.S. Department of Energy is a u.S. Department of Energy is boratory managed by UChicago Argenne, LLC.

DEFINITION OF EXAFS: $\chi(K)$

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu(E)}$$

$$k^2 = 2 \text{ m}_e(\text{E-E}_0)/ \text{ h}$$

$$k^2 = 2 m_e(E-E_0)/\hbar$$

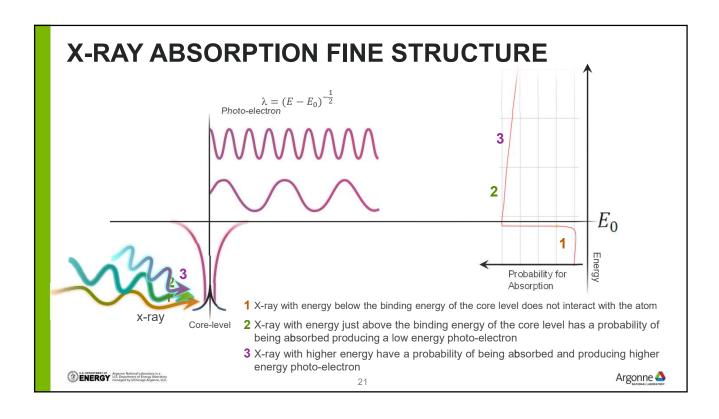
U.S. DEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

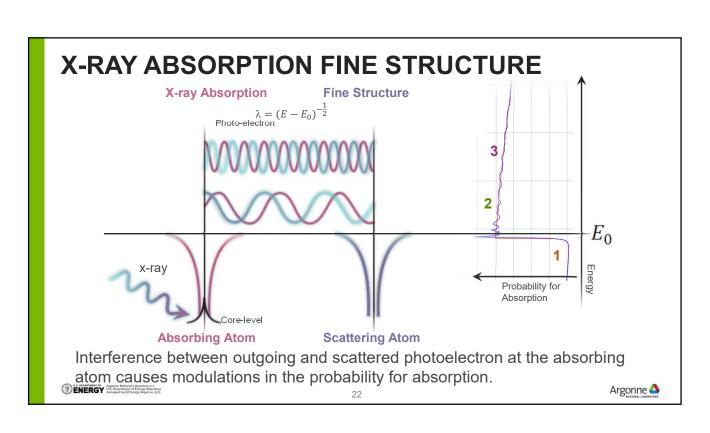
FERMI'S GOLDEN RULE

 $\mu(E) \propto |\langle i|H|f\rangle|^2$

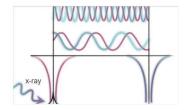
(i) Initial State: atom with core electron

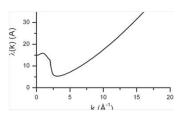
H Interaction term: incident x-ray


 $|f\rangle$ Final State: atom with core hole, photo-electron

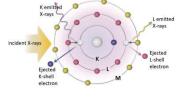

- Transition between two quantum states
- Initial state is well localized at the absorbing atom
- Final state is not, but can be written in terms of two parts

$$|f\rangle = |f_0\rangle + |\Delta f\rangle$$
adsorbing neighboring


ENERGY U.S. Department of Energy is a U.S. Department of Energy isboratory managed by U.Chicago Argonne, LLC.



ADDITIONAL EXAFS DEPENDENCIES

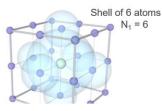


 Atomic Phase shift has two parts. One part from the absorbing atom and another part from the scattering atom.

$$\chi(k) \propto \frac{F(k)}{k^2 R^2} \sin(2kR + \delta(k))$$

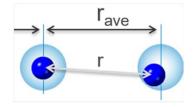
Mean free path of the photoelectron depends on k causes EXAFS to decrease at high k and contributing to complexity in XANES region at low k

 Passive electron reduction factor: The initial and final states include all the passive electrons of the absorbing atom.


$$S_0^2 = \left| \left\langle \phi_f^{N-1} \middle| \phi_i^{N-1} \right\rangle \right|^2$$

U.S. DEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

23



AVERAGE OVER SHELLS OF ATOMS

- EXAFS is a sum of all the scattering events of the photoelectron
- Convenient to group "shells of atoms"

$$\chi(k) = \sum_{i} N_i \chi_i(k)$$

- Not all the atoms in the shell are at the same average distance from the absorbing atom.
- Mean-square displacement of the half path length

 $e^{-2k\sigma^2}$

24

THE EXAFS EQUATION

$$\chi(k) = \Sigma_i \chi_i(k)$$

with
$$\chi(k) = \sum_{j} \frac{N_{j} S_{0}^{2} F_{j}(k) e^{-2k^{2} \sigma_{j}^{2}} e^{-\frac{2R}{\lambda}}}{k R_{j}^{2}} \sin[2kR_{j} + \delta_{j}(k)]$$

$$R_{j} = R_{0} + \Delta R$$

$$k^{2} = 2 \text{ m (F-F_{c})} / \hbar$$

$$R_i = R_0 + \Delta R$$

$$k^2 = 2 m_e(E-E_0)/ \hbar$$

F_i(k) effective scattering amplitude

effective scattering phase shift $\delta_{i}(k)$

λ(k) mean free path

Starting values

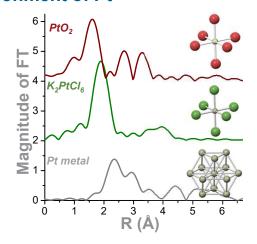
 R_0 initial path length

ENERGY U.S. Department of Energy lisboratory managed by UChicago Argenne, LLC.

N_i degeneracy of path

 S_0^2 passive electron reduction factor

 σ_{i}^{2} mean squared displacement of half-path length

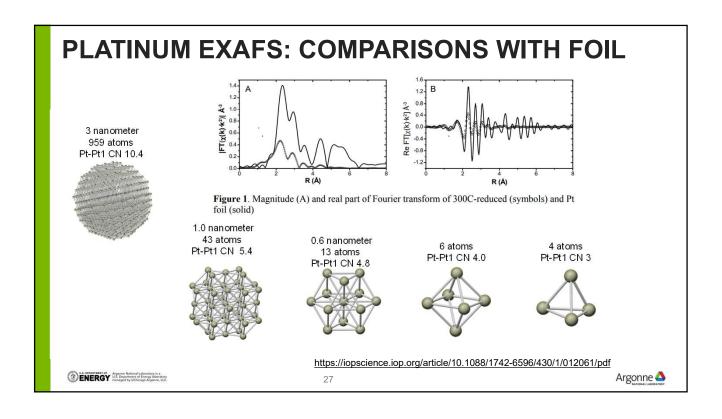

E₀ energy shift

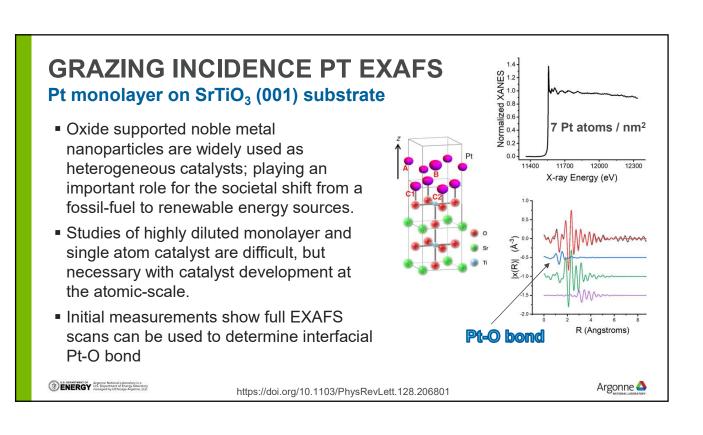
△R change in half-path length

Argonne 📤

PT EXAFS OF REFERENCE MATERIALS

Pt EXAFS: unique information about the average local atomic environment of Pt




PtO ₂		
Neighbor	Number	Distance (Å)
Pt-O	6	2.07
Pt-Pt	6	3.10
	K ₂ PtCl ₆	3
Neighbor	Number	Distance (Å)
Pt-Cl	6	2.32
Pt-K	4	4.22
	Pt meta	ı
Neighbor	Number	Distance (Å)
Pt-Pt	12	2.77
Pt-Pt	6	3.92

Pt-O, Pt-Cl, and Pt-Pt signals are unique and are readily distinguished.

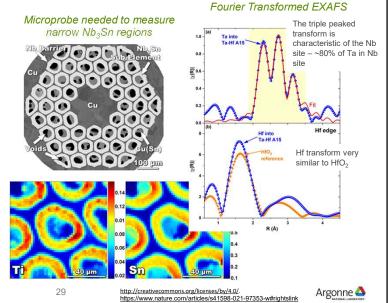
U.S. DEPARTMENT OF Argenne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argenne, LLC.

EXAFS STUDY OF NB₃SN SUPERCONDUCTORS

Heald S. et al., Scientific Reports 2018; Tarantini C, et al. Superconductor Science and Technology 2019

Challenge

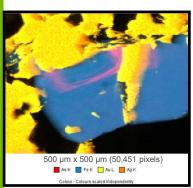
- Nb₃Sn proposed for future accelerator upgrades, but needs improved properties
- Doping can offer improvement, but optimization needs better understanding

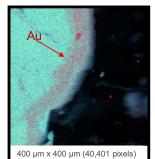

EXAFS

- · Determine dopant lattice location.
- When combined with other results offered key insights into the role of dopants

Result

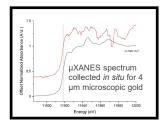
- · Ti, Ta, and Hf dopants studied
- Determined Ta dopant increased antisite disorder with beneficial results
- Hf formed HfO2 nanoparticle pinning sites
- Combined Ta and Hf doping offers promising route to meeting the needs of future accelerators.


U.S. DEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.


BONANZA GOLD MECHANISM

Microprobe XRF and Spectroscopy

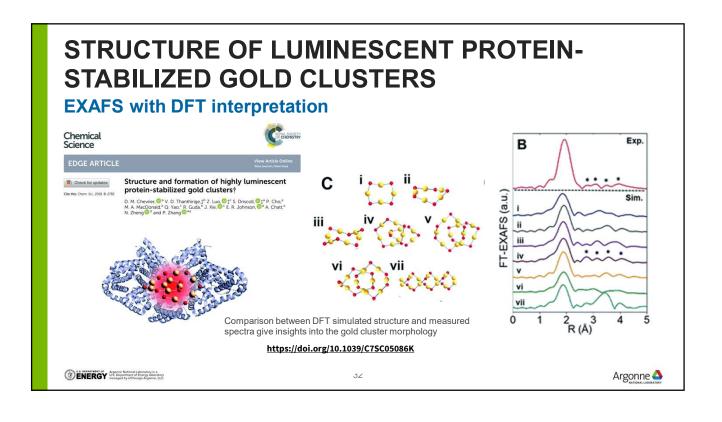
Extremely high-resolution SR-µXRF mapping of arsenian pyrite reveals that bonanza-style gold mineralization was caused by gold flocculation from electron transfer near arsenic-rich bands.

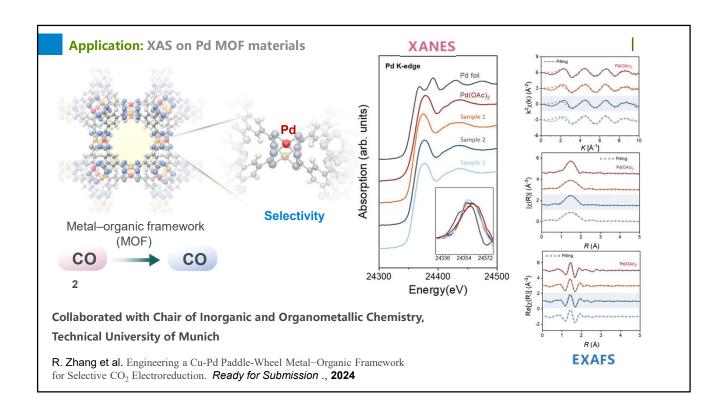


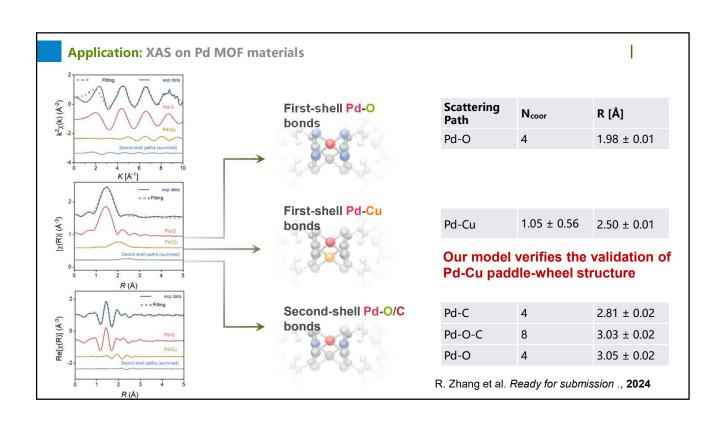
The distribution of electrum (Au, ■ + Ag, ■) on the edges of corroded pyrite grains (Fe, ■) with As banding (As, ■) as fine as <2 µm (single pixel thickness!)

Microscopic metallic gold grain (2 pixels wide, ■) within the As band (As, ■)

on the edge of a pyrite grain (Fe, ■).


Microscopic gold within arsenian pyrite growth zone is metallic Au⁰ and not lattice bound Au⁺¹


U.S. OEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.


Dr. Neil R. Banerjee, P.Geo. Dr. Lisa L. Van Loon, C.Chem. XRF data analysis in Peakaboo (https://peakaboo.org)
Beam spot size: <2 μm x <2 μm
Energy: 26 keV

HIGH TEMPERATURE SHOCKWAVE STABILIZED **SINGLE-ATOM CATALYSTS** Yao, et al., Nature Nanotechnology, 2019 Novel general manufacturing route for single-atom catalysts. Shockwaves with controlled 1,500K high-temp and 55ms short onstate followed by longer off-state. Process ensures dispersion and anchoring of metal atoms on substrate defect sites that are highly stable. Overcoming conventional catalyst deactivation mechanism through metal atom agglomeration. 9-BM Pt and Co EXAFS Pt and Co EXAFS at 9-BM shows the typical Pt foil Pt-CA-CNF, 1 cycles - - Co foil Metal-C signal that is unchanged from the 1-Co HT-SAs 2.0 cycle to the 10-cycle. There is no evidence of 3 Co-Co agglomeration which would present itself as a (A) (A-3) 1.5 strong signal as shown at 2.5 A for metallic 2 1.0 The team includes 20 authors with expertise in shockwave materials synthesis, S/TEM, In situ ETEM, Co-C 0.5 Raman spectroscopy, surface area measurements, ICP-MS, EXAFS, MD and DFT simulations, as well as 0.0 catalysis performance measurements. Tianpin Wu from 9-BM is corresponding author. R(Å) R(Å) ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. https://doi.org/10.1038/s41565-019-0518-7

Q & A

Kelly, S. D.; Hesterberg, D.; Ravel, B.; Analysis of Soils and Minerals Using X-Ray Absorption Spectroscopy. Methods soil Anal. Part 5. Mineral. methods 2008, 5, 387–464.

