2019 NX SCHOOL

IN SITU AND OPERANDO EXPERIMENTS

UTA RUETT LEADER OF STRUCTURAL SCIENCE GROUP AT APS SECTOR 11 & 17-BM

MODERN CHALLENGES

5 600

MODERN CHALLENGES

Synthesis of new Materials
 ■ Understanding intermediates and tuning factors
 → Efficient growth

Properties of materials
Understanding of phenoma

Functionality of materials and devices
Observing mechanisms
Understanding limitations
→ Optimized functionality

MODERN CHALLENGES

Synthesis of new Materials Reactor High pressure cell Deposition system Furnace for annealing Multi-modal

Properties of materials Temperature (heating, cooling) Magnetic Field Electrical field Pressure Load frame Viscosity

Functionality of materials and devices Battery cycler Gas loading Reactor for catalysis Load frame Rheology

H₀

SYNTHESIS

SYNTHESES REACTORS: WATCHING CHEMISTRY IN ACTION

In situ synthesis / annealing / deposition

SYNTHESES REACTORS

Diffraction – Total scattering – Small angle scattering – Spectroscopy

Synthesis reactor, 600° C

SYNTHESES REACTORS

Diffraction – Total scattering – Small angle scattering – Spectroscopy

Observation of structural changes

- Morphology
- Intermediates
- Metastable intermediates
- \rightarrow Tuning reaction pathway

SYNTHESES REACTORS:

Flash Sintering

Courtesy by Harry Charalambous

Energies (keV)

ATOMIC LAYER DEPOSITION

Deposition of precursors on substrates, but also on porous material or nanoparticles through gas flow

IN SITU FILM GROWTH WITH MULTIMODAL APPROACH Molecular Beam Epitaxy (MBE) @PETRA III (Germany)

Courtesy by Anita Ehnes and Ann-Christin Dippel

- gazing incident geometry for surface sensitivity
- no detector motion using large 2D detector
- only sample rotation required

→ follow the growth of an epitaxial thin film with time resolution below 5 sec

Collaboration with J. Wollschläger (BMBF project) 11

- XPS detector & x-ray tube
- RHEED system (offline only)
- LEED system for preparation chamber
- mass spectrometer

F. Bertram |scientist,DESY J.T. Röh |engineer,DESY

IN-SITU SPUTTER CHAMBER FOR PDF ANALYSIS

Courtesy by Ann-Christin Dippel

Photonenergy > 80 keV

Ann-Christin Dippel et al. IUCrJ (2019). 6

Time resolution: 15Hz

A.C. Dippel |scientist, DESYM. Roelsgaard | scientist ,Aarhus Uni, DenmarkJ.T. Röh |engineer,sample environment,DESY

ADDITIVE MANUFACTURING RESEARCH AT APS

Courtesy by Tao Sun

Address the critical issues in metal additive manufacturing

IN SITU/OPERANDO X-RAY STUDIES ON AM PROCESSES

Courtesy by Tao Sun

PROPERTIES OF MATERIALS

FURNACES

Commercial / modified/ home made

Linkham (~1500° C)

Hot air blower (up to 900° C)

Anton Paar

Resistive capillary heater (up to 1000° C)

FURNACES

Home made

Batch reactor for capillaries: simultaneous heating of several samples

FURNACES

Extreme Conditions: Aerodynamic Levitation

Courtesy by Chris Benmore

- Laser heating & aerodynamic levitation.
- Access structures at extreme temperatures from 1500 to >3300°C.
- Oxides processed in Ar, O, N, air, CO/CO₂ atmospheres.
- Containerless: no container contamination, supercool liquids several hundred degrees.
- Observation of meta-stable states.

Levitating liquids

nature materials | VOL 7 | NOVEMBER 2008 |

Detection of First-Order Liquid/Liquid Phase Transitions in Yttrium Oxide–Aluminum Oxide Melts

G. N. Greaves,¹* M. C. Wilding,¹ S. Fearn,¹ D. Langstaff,¹ F. Kargl,¹ S. Cox,¹ Q. Vu Van,¹ O. Majérus,² C. J. Benmore,³ R. Weber,⁴ C. M. Martin,⁵ L. Hennet⁶

X-ray Nozzle Laser beam Ar gas flow Pyrometer and Access port Video camera viewport High energy X-ray beam Kapton window Beamstop to image plate Access port detector Levitated sample

Network topology for the formation of solvated electrons in binary CaO-Al₂O₃ composition glasses

Jaakko Akola^{alar,} Shinji Kohara^{d,} I, Koji Ohara^d, Akihiko Fujiwara^d, Yasuhiro Watanabe^o, Atsunobu Masuno^o, Takeshi Usuki¹, Takashi Kubo^a, Atsushi Nakahira^a, Kiyofumi Nitta^d, Tomoya Uruga^a, J. K. Richard Weber^{asi}, and Chris J. Bemore^{1,1}

www.pnas.org/cgi/doi/10.1073/pnas.1300908110

CRYOSTATS – CRYOCOOLER

Displex: sample shielded (<10 K) Bath cryostat: sample shielded (<10 K) LN2/He- Cryostream: sample in air (80K/4K)

MAGNETIC FIELDS

Earth: 0.00004 T Refigrator magnet: 0.005 T Permanent magnet neobdynium:1.25 T

Contiunous field Superconductor: <20T Pulsed field: 100 T

DIFFRACTION STUDIES IN PULSED MAGNETIC FIELD (GEOMETRY)

Split-pair magnet:

TRANSVERSE (no optical access limitation) LONGITUDINAL (out-of-plane; very limited)

Solenoid:

TRANSVERSE (forward scattering; limited) LONGITUDINAL (back-reflection; sensitive)

MAGNETIC FIELD

Courtesy by Joerg Strempfer

Electromagnet ~ 0.1 T

For XMCD

MAGNETIC FIELD:

Superconducting

6.5 T spectroscopy

Spectrom ag 23

7 T HEX diffraction

14 T diffraction

MAGNETIC FIELD: Long-pulse 30 Tesla solenoid

Courtesy by Zahir Islam

- Large safety margin (use lower voltages than maximum rated voltage of 10 kV reduces chances of capacitor failures
- 30 Tesla, 10 ms pulse every 12 minutes
- Longer pulse matching fast (~1 kHz) 2D detectors (*e.g.* MMPAD) to improve efficiency

APS: D. Capatina, G. Trento, A. Cours, J. Fuerst; NHMFL: bank; Tohoku: high-field coil & choke coir

۵

2.5

5.0

7.5

10.0

12.5

15.0

0

FRUSTRATED MAGNETISM: MAGNETO-ELASTICS OF A SPIN LIQUID

Courtesy by Zahir Islam

Conceptually important model system

- Strong correlations/fluctuations
- Coupled degrees of freedom
- Novel (quantum) phases

Material has no magnetic order down to ~70mK. Magnetostriction observed below 25T and structural transition above 25T.

1ms pulse every >20 minutes

ELECTRICAL FIELD

Courtesy by Yang Ren

LOAD FRAME Single Crystal Uniaxial Strain : Razorbill CS100, 5[.]10⁶ N/m, 6 µm displacement

Temperature + Strain + Electrical field

Courtesy by Philip Ryan

1500 x 300 µm²

FUNCTIONALITY

COMPRISES & MODEL SYSTEMS

Actual devices $\leftarrow \rightarrow$ Reduction to the relevant

Industry standard coin cell

"X-ray enabled coin cell

Coin cell substitute

LOAD FRAME In-grip Rotation During Mechanical Loading

Courtesy by Jon Almer

- Rotation and Axial Motion System (RAMS)
- Enables HEDM and tomographic imaging during mechanical loading

30

RAMS developed by AFRL/PulseRay and partner users at ANL/CMU/LLNL/Petra-III

30

LOAD FRAME

Grain-resolved Strains Along Loading Direction (FF-HEDM)

Courtesy by Jon Almer

Load -0.7128702715 MPa

^{*}Dišplacement -0.0004514811 mm

- Full 3D strain/stress tensors of all grains in ~1mm³ volume
- Axial strains in elastic regime shown heterogeneous!
- During creep, stress heterogeneity increases (not shown)
- Rich set of data to test material models

J. Schuren, P. Shade et al, COMMS 19 (2015), 235-244

ELECTROCHEMISTRY Comprises & Model Systems

Actual devices $\leftarrow \rightarrow$ Reduction to the relevant

Industry standard coin cell

"X-ray enabled coin cell

Coin cell substitute

Courtesy by Kamila Wiaderek

ELECTROCHEMISTRY BRIDGE To The Gap Between Performance And Data Quality; AMPIX cell

Courtesy by Kamila Wiaderek

Argonne Argonicz et. al, J. Appl. Cryst., **2012**, 1261-1269

ELECTROCHEMISTRY

Pellet Horizontal Surface Aligned Parallel To The X-ray Beam

Electrode homogeneity is true commercial challenge

Sample environments that allow full cell studies and deconvolution of the signal coming from anode and cathode are in demand.

Existing cells are still in the development stages and have poor reliability

Courtesy by Kamila Wiaderek

Negative electrode

Glass fibre

separator

Positive

electrode

Borkiewicz et. al, Phys. Chem. Chem. Phys., 2013, 8466-8469

ELECTROCHEMISTRY Electrochemical Lithiation Cycles Of Gold Anodes In Model System

P. Bach, I. Valencia-Jaime, U. Ruett, O. Gutowski, A.H. Romero, F.U. Renner .Chem. Mater., (2016), 28 (9), 2941

GAS LOADING AND CATALYSIS

Courtesy by Andrey Yakovenko

Evolution of Active Sites in Pt-Based Nanoalloy Catalysts for the Oxidation of Carbonaceous Species by Combined in Situ Infrared Spectroscopy and Total X-ray Scattering

Valeri Petkov,^{*,†©} Yazan Maswadeh,[†] Aolin Lu,[‡] Shiyao Shan,[‡] Haval Kareem,[‡] Yinguang Zhao,[‡] Jin Luo,[‡] Chuan-Jian Zhong,^{‡©} Kevin Beyer,[§] and Karena Chapman^{§©}

CATALYSIS Pd surface, $CO \rightarrow CO2$

Courtesy by Johan Gustafson, PETRA III

J. Gustafson, M. Shiplin, C. Zhang et al. (2014) Science 343, p.758

TAKE HOME MESSAGE: DON'T LIMIT YOURSELF TO THE EXISTING TOOLS, BUT GET INSPIRED BY THE VARIETY THE EXISTING SAMPLE ENVIRONMENTS SHOW WHAT WE CAN DO TODAY, THEY DON'T DETERMINE WHAT YOU WILL DO IN THE FUTURE.

ALBERT EINSTEIN: "YOU HAVE TO LEARN THE RULES OF THE GAME, AND THEN YOU HAVE TO PLAY BETTER THAN ANYONE ELSE."

www.anl.gov