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Using Diffraction to Make the Connection Between 

Materials Processing and Properties

Donald W. Brown

Los Alamos National Laboratory, Los Alamos, NM 87544
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Flour, Water, Salt, Yeast…

Microstructure Matters!

The ingredients are the same, the Properties (taste, texture, density, 

etc) are different. These are set by the Processing.
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Figure 1. Optical micrographs from a.) as-received hot-pressed sample, b.) as-received rolled samples, c.) hot-pressed samples after 5.6% 

compression at room temperature, and d.) rolled sample after 8.2% compression at room temperature. Rolling normal (RN) direction is 

indicated for the rolled samples.  In both c and d, the compression axis is across the page.  

a.) b.)

c.) d.)
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compression at room temperature, and d.) rolled sample after 8.2% compression at room temperature. Rolling normal (RN) direction is 

indicated for the rolled samples.  In both c and d, the compression axis is across the page.  
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c.) d.)

In Materials, We Call This The Process/Structure/Property Relationship.  

Hot-Pressed Beryllium Rolled (wrought) Beryllium
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Bottom Line: Scattering Can Be Used to Quantitatively Determine 

Some Microstructural Features in Engineering Materials

Microstructural 

Feature

Property Effects Accessible to 

Scattering? 

Observable

Phase Strength, Ductility
✓

Unique Diffraction 

Peaks

Texture Elastic Modulus, Speed of Sound
✓

Peak Intensity

Defects/

Dislocations

Strength, Phase Stability
✓

Peak Width

Solute Distribution Phase Stability, Strength
✓

Peak Shift

Residual Stress Lifetime
✓

Peak Shift

Density Fluctuations 

(pores, phases, etc)

Mechanical Stability, Shock Propagation
✓

Increase in SAS

Grain Size Strength


N/A

• So far this is agnostic to Neutrons or HEXRD (>35keV keV).
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Proton Radiography

Lujan  Neutron Scattering 

Center
Weapons Neutron Research

Facility

800 MeV Proton Linear 

Accelerator

Isotope Production

Facility

Los Alamos Neutron Science Center : LANSCE

Neutron sources do not sit on desktops
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Time of Flight Neutron Diffraction at a Spallation Source
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• Velocity (and ) determined by the neutron time of flight.

• Entire diffraction pattern collected with unique diffraction vector.

• Advantageous for anisotropic samples.
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Diffraction Provides Non-Destructive Access to the Microstructure

Slide 7

• Diffraction naturally distinguishes between the response of different grain orientations (and phases).

• Position : Stress, Temperature, Chemistry

• Intensity : Texture, Phase Fraction, Disorder

• Width : Size, Dislocation Density, …

• Crystal anisotropy means grain response is orientation dependent.

• Lattice parameter, a, averages over all orientations and best approximates macroscopic response.

Pos
Int

Width

Q
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Stress is Calculated From the Elastic Lattice Strain

• We measure the spacing between atoms very accurately, ~10 ppm.

• Calculate lattice strains from change in atomic spacing due to stress.

– Lattice strain : 

• If we know the spring constants, we can calculate the stresses from the 

strains.

– klijklij C  =

𝜀𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
𝑎 − 𝑎0

𝑎
; 𝜀ℎ𝑘𝑙 =

𝑑ℎ𝑘𝑙 − 𝑑0
ℎ𝑘𝑙

𝑑0
ℎ𝑘𝑙



E. Macherauch: International Guidebook on Residual Stresses. 
(Pergamon Press, Elmsford, New York, 10523, 1987), p.^pp. 1-36.

Diffraction Probes Stresses/Strains at Multiple Length Scales

Type I Macroscopic Stress: 

lattice parameter

Type II Intergranular Stress: d-

spacing (hkl)

• Elastic, plastic, thermal 

anisotropy, etc  contribute to 

intergranular stress.

• Dislocation density drives 

intragranular stress.

Type III Intergranular 

Stress: peak width



gb  0

dislocation is visible

strong contrast

strong line broadening

Stress Field Associated With Dislocations Results in Peak 

Broadening

gb = 0

dislocation is invisible

weak contrast

weak line broadening

g.b  0

g.b = 0

Jostsons, A., Kelly, P. M. and Blake, R. G., Journal of 

Nuclear Materials, 66 (1977) 236-256.



Representation of Crystallographic Texture : Pole Figures and Inverse Pole Figures

Rolling Normal

• Pole Figure :Density of a given {hkl} as a function of orientation relative to sample axis.

• Measured directly with monochromatic x-ray or neutron diffraction.

• Density of all {hkl}’s on stereographic triangle along a given sample axis.

• Measured directly with TOF neutron diffraction

Rolling Direction
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Peak Intensities Relate Directly to Crystallographic Texture

Rolled Magnesium
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• Moderately high resolution diffractometer.

– Can determine lattice strain to 1 part in 105.

• 250 kN tension or compression, 100 kN T-C cycling.

• 90-2000K (1700K with loading).

• Quenching furnace (>20C/sec).

• Best spatial resolution of 1mm.

• Sample table : horizontal travel ±30 cm, vertical ±60 cm, 370º rotation, 1500 Kg capacity.

• Radioactive samples are easy.

• ~1 minute time scales, 1 mm length scales.

• dbrown@lanl.gov

Translator

SMARTS Designed to Study Engineering Materials Under 

Operating Conditions 



Sequential Deformation And Recovery Experiments on 

Tantalum Completed on SMARTS

• Rolled and annealed plate Tantalum

• Grain size of roughly 35 m 

• Samples from the through-thickness and 

in-plane directions

T.E. Buchheit, E.K. Cerreta, L. Diebler, S.-R. Chen, J.R. Michael (2014). 

Report SAND2014-17645. Sandia National Laboratory.

-90° Detector 

Bank (2)
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Double 
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• In-Situ measurements limited to about 8% strain before buckling typically occurs.

• Significant relaxation occurs while neutron data is collected.
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Sequential Deformation And Recovery Experiments on Ta 

Completed on SMARTS
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Diffraction Measurements on SMARTS Reveal Stress Information 

at Multiple Length Scales
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The strain from the lattice parameter (averaged over all grain 

orientations) is representative of the macroscopic strain.

This spread represents the response to intergranular stresses, 

called anisotropy strain.
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Increase in peak breadth is indicative of intragranular 

strains and is linked to dislocation density
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Recovery of Dislocations in Deformed Tantalum Initiates at 700K

Intragranular Stress
Intergranular Stress

Independent of the initial dislocation density (stored energy).
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Recrystallization Manifests as a Texture Change at Higher Temperature
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q dependent reduction in intensity is a response to 

the increase of the Debye-Waller factor

Orientation dependent intensity change is 

indicative of texture ramdomization

Occurs earlier with 

increased deformation
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Conclusions

• Neutrons (and X-rays) provide a convenient, quantitative, non-contact probe 

of the microstructure. 

• Phase, texture, stress, dislocation density, solute chemistry.

• In careful measurements, can separate stresses by length scale.

• The increase in dislocation density during deformation is easy to observe, but 

difficult to quantify. 

• Recovery and RX are observable as distinct events during heat treating

• Study element Ta as a step toward complex BCC alloys. 

• This data can be used to develop predictive process/structure/property 

relationships and enable “materials by design”.
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The next steps are to develop the deformation and recovery models, 

and to get irradiated samples from Idaho National Laboratory



• Advanced models are critical for science-based qualification.

− Models and data must bridge length and time scales. 

− Quantitative microstructural data is necessary. 

24

The Goal of the Materials Scattering Team is to Provide Experimental 

Support of Model Development Across the PSPP Relationship 

High Energy X-ray and 

Neutron Diffraction/Imaging

1.Phase

2.Defects

3.Texture

4.Internal Stress

5.Chemistry
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