

In situ and operando neutron diffraction (II)

Jue Liu
Powder Diffraction Group
Neutron Scattering Division
Oak Ridge National Laboratory

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Spallation Neutron Source at Oak Ridge National Laboratory

Energy selective imaging in

materials science,

engineering, materials

sciences and biology

lassina Bilheux • 865.384.9630 bilheuxhn@ornl.gov

ENERGY

Office of Science

Powder Diffractometer (POWGEN) •

BL-11A

Atomic-level structures in chemistry, materials science, and

condensed matter physics including magnetic spin structures

Ashfia Huq • 630.986.7321 • huqa@ornl.gov

NEUTRON SCI

Detailed studies of disorder in

crystalline materials

Engineering Materials Diffractometer

(VULCAN) - BL-7

materials processing

echanical behaviors, materials science,

Joerg C. Neuefeind Instrument Scientist

Cheng Li Instrument Scientist

Jue Liu Instrument Scientist

Emily Van Auken Scientific Associate

Matt Tucker
Diffraction Group Leader

* Scheduled commissioning date

Operating instrument in user program

commissioning or operating

In design or construction

in situ and operando characterization of functioning materials

In situ

The examination or occurrence of a process within its original context, without relocation.

Catalytic/chemical reaction, phase transition etc.

Nat Commun 16, 2593 (2025)

Operando

In the act of "working" or "during operation". It describes a method or technique where a device or system is observed and analyzed while it is actively functioning or performing its intended task.

Batteries, fuel cells, engines...

Advantages of neutron scattering for in situ/operando studies

Chem. Rev. 2023, 123, 13, 8638-8700

Neutron scattering covers a broad energy (time) and length scales for many relevant phenomena

Advantages of neutron scattering for in situ/operando studies

JACS, 142, 7655 (2020). Data from VISION

*OAK RIDGE | Nat Commun 14, 4950 (2023). Data from VULCAN

ACS Energy Lett. 4, 10, 2402–2408 (2019). Data from MARS

Operando neutron diffraction for battery research

Advantages of neutron diffraction for battery research

- Detects light atoms even in the presence of heavy atoms (H, Li, C and O)
- Distinguishes adjacent atoms and even isotopes of the same element (neighboring transition metal ions, e.g. Mn, Fe, Co and Ni etc.)
- With neutrons, negative scattering lengths are possible (e.g. Mn, Ti, Li, H)
- Strong penetration of the neutrons, nondestructive, no disturb of the electrochemical reactions (in situ)

Identifying Li⁺ positions in battery electrode/electrolyte materials

Li sublattice in argyrodite Li₆PS₅Cl

Superionic transition in Li₃YCl₆

Distinguishing neighboring transition metal cations

P3-type layered Na_{2/3}Cu_{1/3}Mn_{2/3}O₂

S.G. $P2_1/c$, a = 6.6027(2) Å, b = 8.7137(2) Å, c =5.0085(1) Å and β = 122.360(1)°

Why do we need operando (neutron) diffraction?

- Many intermediate phases are metastable
- Sensitive to light elements and excellent contrast for neighboring cations
- Non-destructive and not disturbing the electrochemical reaction
- Neutron diffraction is a flux limited technique

Challenges of operando neutron diffraction study of batteries?

Pouch cell

Coin cell

Cylindrical cell

Jelly roll cell

- New in situ cells with low background and reproducible electrochemistry
- High throughput measurements, fast data acquisition (minutes or sub-minute) of quantitatively refinable data

Developing neutron diffraction friendly in situ cells and sample environment

- Easy electrode alignment (transparent) and prevent internal short circuit (insulating)
- Reproducible electrochemistry
- Easy fabrication of large amounts of customized in situ cells (high throughput)
- Minimizes the amounts of illuminated electrolytes and significantly reduces the parasitic/incoherent scattering signal

Experiment set up and data collection

Data quality assessment

- Can be operated in either high throughput or high-rate mode
- Good quality data can be obtained for both cathode and anode electrode materials

Data quality assessment: qualitative analysis

- Four different phases: cathode, graphite, Al and Cu.
- Graphite lithiation follows staging phase transitions (stage III phase is a solid solution phase)
- NMC/NCA follows solid solution reaction path

Parametric structure refinements

- High quality data collected for composition dependent Ni-rich cathodes
- Quantitative structure changes obtained using parametric structure refinements

Universal structural evolution of Ni-rich cathode materials

Anomalous increase of average TM-O bond lengths above ~75% SOC

Universal structural evolution of Ni-rich cathode materials

- Classical model explains structural transitions in stage I and II: competition between the decrease of screening effects and the increase of TM-O covalency
- More complex mechanisms for structural evolution in stages III and IV
- The abnormal increase of average TM-O bond lengths in stage IV cannot be explained using the classical model

