

Small Angle Neutron Scattering for Beginners

K. Littrell, NSSD
W. Heller, V. Pingali, and V. Urban, CSMB
Oak Ridge National Laboratory

Outline

- What is Small Angle Scattering
- Applications for SAS
- Why Neutrons?
- SANS instrumentation
- SANS Data Reduction
- Today's System

What Is Small Angle Scattering?

Isotope labeling (6.34E10 cm⁻² for D_2O and -0.56E10 cm⁻² for H_2O)

$$R = \frac{2\pi}{Q}$$
 ; $Q = \frac{4\pi}{\lambda} \cdot \sin\frac{\theta}{2}$

 λ is neutron or x-ray wavelength

Probes length scales of ~ 0.5 - 100 nm Using angles of $\theta = 0.5$ to 5°

A powerful tool for studying disordered bulk materials (solid and solution phases)

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Small Angle Scattering and Other Techniques

Contrast Variation Possibilities

$$I(Q) = N V^2 (\rho_p - \rho_m)^2 e^{-Q^2 Rg^2/3}$$

When $\rho_p = \rho_m$ Contrast match Situation No Coherent Scattering SANS: Vary by changing the Deuterium level

SAXS: Sensitivity increases with Z

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Applications for SAS

- Typical Systems
 - Polymer Science
 - Metallic Alloys
 - Ceramics
 - Porous Materials
 - Structural Biology
 - Nanocomposites
 - Magnetic Materials
 - Colloidal Science
 - Fuel Science

- Typical Samples
 - Solutions,
 - Solids,
 - Powders,
 - Thin Films

- Typical Control Variables
 - Temperature
 - Concentration
 - Pressure
 - Magnetic field
 - Time
 - Shear

Examples of Self-Assembling Systems

- Detergent Molecules to Micelles- Aqueous Media
- Detergent Molecules to Reverse Micelles-Organic solvents
- Amphiphilic phosphotidylcholines into biomembranes
- Supramolecular Assembly of smaller proteins
- Protein and RNA folding to their native conformations
- Chemically engineered systems into supramolecular structures
- Amphiphilic block copolymers in Solvents
- Amyloids to fibrous structures

Information from SAS

- Size
- Shape
- Molecular Weight
- Interaction distances
- Self Assembly
 - Phase transition
 - Thermodynamics
 - Reaction kinetics
- Crystallization
- Fractal Dimension

Why Neutrons?

- Low Energy (E=80meV for 1 Å neutrons vs. 12.42 keV for x-rays.
 No radiation damage.)
- High Penetration of cold neutrons bulk samples
- Large difference in the scattering cross-section for the hydrogen and deuterium- contrast variation capability.
 - Solute or solvent can be deuterated to vary the contrast $(\rho H_2O=-0.56x10^{10}cm^{-2}, \rho D_2O=6.334x10^{10}cm^{-2})$
 - Study of multicomponent systems through selective deuteration and contrast matching with H/D mixtures.

SANS from heirarchical structures

SANS is a structural technique that probes a wide array of length scales

Small-angle Scattering Basics

Wave vector **k**: $|\mathbf{k}| = \mathbf{k} = 2\pi/\lambda$

Physics of scattering is no different than physics of diffraction

What SANS Measures

SANS probes differences in scattering length density within a sample

The measurement probes the time and ensemble average

Interference of wavelets from distribution of nuclei (= structure) adds up to "net scattering" amplitude (Fourier transform of structure).

$$I(q) = \left| \left\langle \int_{V} (\rho(\vec{r}) - \rho_{s}) e^{-i\vec{q} \cdot \vec{r}} d^{3}r \right\rangle \right|^{2}$$

$$|\vec{q}| = (4\pi \sin \theta)/\lambda$$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Neutron and x-ray scattering crosssections

X-ray and neutron scattering are essentially the same, except...

- X-rays scatter from electrons
- Neutrons scatter from nuclei

SANS Differences

Neutrons see nuclei and distinguish between isotopes

	С	N	0	Н	D
b _{coh} (fm)	+6.65	+9.36	+5.81	-3.74	+6.67
σ _{coh} (barns)	5.56	11.03	4.23	1.76	5.59
σ _{inc} (barns)	0	0.49	0	80.27	2.05

Selective deuterium labeling in a sample is a powerful tool for looking at specific features within an intact system because it enables **contrast variation**.

It is the main reason why SANS is so powerful!

Scattering Length Densities

Neutron Scattering Length					
Densities					
System	ρ (10 ¹⁰ cm ⁻²)	Eq. D ₂ O			
<u>(%)</u>	0.50	_			
H ₂ O	-0.56	O			
D_2O	6.338	100			
C ₆ H ₁₂	-0.277				
$C_6^0 D_{12}^{12}$	6.678				
AOT	0.00	4.7			
AOT	0.62	17			
SiO ₂	3.5	59			
TiO ₂	2.37	42			
ZnS	2.09	38			
ZnSe	3.1	53			
Gold Coll.	3.59	66			
PbS	2.30	41.5			
1 50	2.00	T1.0			

Electron Densities (X-rays)				
System	(10 ¹⁰ cm ⁻²)			
H ₂ O	9.36			
C ₆ H ₁₂	7.48			
AOT	10.0			
SiO ₂ TiO ₂	19.02 30.8			
ZnS ZnSe	31.68 40.42			
CdS CdSe	36 41.98			

Contrast variation in SANS

One way to think about contrast variation of selectively labeled complexes is that you are changing the "color" of isotopically-labeled material

Selective labeling to provide contrast has a smaller impact on the material than labeling used in other experimental methods.

Highlight components of a multicomponent system relative to the solvent and the other subunits

Visualize individual elements within a dense bulk material

SANS Instruments

Source: A spallation source or a reactor

Monochromator/Chopper: Defines wavelength(s)

Collimating Optics: Defines the angular divergence of the beam

Determines the maximum size probed

Detector: Collects the neutrons scattered by the sample

SNS and HFIR have large area detectors

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

SANS Instruments—steady-state vs. TOF

- Steady-state
 - Higher flux
 - Larger $\Delta\lambda$ at each wavelength
 - Only one wavelength per measurement
 - Smaller Q range
 - Multiple measurements required for wide Q range
 - Better resolution at low Q
- Pulsed-source TOF
 - Lower flux (as of now)
 - Smaller $\Delta\lambda$ at each wavelength
 - Multiple wavelengths simultaneously
 - Larger Q range
 - Longer measurements required for signal-to-noise
 - Better at resolution at high Q

Anatomy of a SANS

CSMB CSMB

The velocity selector

	Cold	Thermal
T (K)	20	300
v (m/s)	574	2224
E (meV)	1.7	25.9
λ (Å)	6.89	1.78

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

SANS guide hall (HFIR)

SANS guide hall (HFIR)

GG2 General-Purpose SANS Instrument Details

- 1m² Ordela 21000N area detector with 5.1 mm edge length square pixels
- Wavelength range from 4.2–18 Å (or longer)
- Initial flight path 1.8–17.4 m, Final flight path 1.1–19.4 m
- Full Q range <0.001–1 Å⁻¹, single-setting Q_{max}/Q_{min} 10–20 (detector offset)
- Flux on sample with 1.8 m initial flight path at 4.2 Å: 4×10⁷ n/s/cm²
- Flux on sample with 17.4 m initial flight path at 18 Å: 0.9×10⁴ n/s/cm²
- Sample environments: -5-100+°C sample changer, 5-300K cryostat, horizontal and vertical translation, Magnetic fields, more...

Moderator

- Thermalizes neutrons
 - Inelastic collisions
 - Highly protonated
 - − ~30K
- Creates energy spectrum

Collimator

- Focuses Neutrons
- Defines center
- Critical component of resolution
- Balance resolution with flux

Detector

- He³ detector
 - Triton
 - Proton
- Xe/CO₂
 - Multiplication
 - Quench
- Two wires
 - Start stop timeposition

- Highly efficient
 - Neutron efficient
 - Gamma insensitve

- Position Sensitive
- Time encoding (for ToF)

Combining data from different settings

Bragg diffraction: $n\lambda = 2d\sin\theta$

Fastest n, shortest λ

Ring radius increases with both wavelength and distance

θ Range, Q_{MIN} and Q_{MAX}, and Binning

$$Q_{\text{MIN,MAX}} = \frac{4\pi}{\lambda_{\text{MAX,MIN}}} \sin \theta_{\text{MIN.MAX}}$$

$$0.15^{\circ} \le 2\theta \le 60^{\circ}$$
$$0.001 \mathring{A}^{-1} \le Q \le 1.3 \mathring{A}^{-1}$$

 $\begin{array}{ccc} \lambda \; large & & \lambda \; small \\ \theta \; small & & \theta \; large \end{array}$

Each sample, BIN data according to wavelength and position

$$\lambda = 2 \text{ Å scattered at } 2\theta = 0.73^{\circ}$$

$$\lambda = 8 \text{ Å scattered at } 2\theta = 2.92^{\circ} \text{ both give } Q = 0.04 \text{ Å}^{-1}$$

Neutrons scattered at different wavelengths at different angles can contribute to same Q.

Number of neutron S(x,y,t) to Absolute Intensity I(Q)

- Detector efficiency and sensitivity
- Background (sample and non-sample)
- Convert intensity to absolute scale (units = cm-1)
- For each sample you will need
 - Transmission data for each wavelength (attenuated direct beam or beam spreader)
 - Scattering data for each wavelength and instrument geometry
- For each wavelength and geometry you will need
 - Empty beam transmission data
 - Data mask
- For the whole experiment you will need
 - Dark current data
 - Detector pixel efficiency

Detector Counts To I(Q) Function

Combined data from different settings

Absolute Scattering Intensity (as a function of Q)

Bates Polymer: $I(0)_{std} = 2800(30) \text{cm}^{-1}$

$$I(Q)_{sample} = S(Q)_{sample} \frac{d_{standard}}{d_{sample}} \frac{I(0)_{standard}}{S(0)_{standard}}$$

$$S(x,y,t) \longrightarrow S(\theta,\lambda) \xrightarrow{2D-1D} S(Q) \xrightarrow{I(Q)} I(Q)$$

Conclusions

 In practice, much of the data reduction is in the form of a black box

However, you should understand how it works

It usually does.

