
INSTRUMENT

SNAP – Spallation Neutrons and Pressure Diffractometer

The Spallation Neutrons and Pressure (SNAP) diffractometer, a high-flux, medium-resolution instrument, uses highly integrated advanced area detectors, beam-focusing optics, and a suite of pressure devices to study a variety of powdered, single-crystal, and amorphous materials under extreme pressure and temperature. Traditional Paris-Edinburgh presses are used to reach 25 GPa. The instrument staff and the instrument development team are making progress with "large-volume" diamond anvil cells in hopes of significantly extending the pressure range currently accessible to neutron dif-

fraction. The goal is to routinely achieve pressures up to 40 GPa for samples on the order of 0.05 mm³. Higher pressures are not yet available to general users; commissioning-type experimental collaborations are welcome.

APPLICATIONS

- Hydrogen under extreme conditions
- Planetary ices—structure and strength of ices under pressure
- Silicate melts—glasses at high pressure and temperature and the dynamical changes occurring during heating and pressurization
- Hydrogen bonding in organic and inorganic systems as a function of pressure and temperature, including liquids
- Structural studies in functional oxides such as thermoelectrics and ferroelectrics
- Magneto-structural correlations in lanthanides and transition metal compounds
- Structural signatures of pressure-induced phenomena in nonconventional superconductivity
- Pressure effects on permanent magnets

FOR MORE INFORMATION, CONTACT

Instrument Scientist: Chris Tulk, tulkca@ornl.gov, 865.574.5764

Instrument Scientist: Antonio M. dos Santos, dossantosam@ornl.gov, 865.241.1748

Instrument Scientist: Bianca Haberl, haberlb@ornl.gov, 865.576.2402

SPECIFICATIONS

Moderator	Decoupled poisoned supercritical hydrogen
Source- to-sample distance	15 m
Sample- to-detector distance	50 cm
Angular coverage	26° < 2Θ < 138°, ±22.5° vertical

Pressure range	Up to 40 GPa using various pressure devices
Temperature range	10 K to 1500 K w/ reduced pressure range)
Focused beam size	From 1 cm to 400 μ m

Wavelength range (bandwidth)	
At 2Θ = 90°	

(crystalline powder) $0.5 \le d \le 8.0 \text{ Å}$

At $2\Theta = 35^{\circ}$ (glasses & liquids) $0.7 \le Q \le 20 \text{ Å}^{-1}$

Status: Available to users

