

Update on Second Target Station Instrument Selection

Ken Herwig STS Instrument Systems Manager

Webinar

25 February 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

https://neutrons.ornl.gov/sts

STS at SNS will be a high peak brightness pulsed source for cold neutrons

STS will deliver beams of cold neutrons with higher peak brightness and broader ranges of neutron energies that are needed to meet challenges at the frontiers of matter and energy:

- Simultaneous measurement of hierarchical architectures ٠ across unprecedented ranges of length scales
- Time-resolved measurements of kinetic processes and ٠ beyond-equilibrium matter
- Characterization of smaller samples and matter under ٠ more extreme conditions
- Applications for developing next-generation materials for ٠ energy, security, and industrial applications

₹OAK RIDGE https://neutrons.ornl.gov/sts

Selection criteria guide prioritization for instrument construction

- Scientific importance and impact
 - Will the proposed instrument advance the frontiers of knowledge?
 - What are the broader societal impacts of the proposed science case?
 - Does the science case identify grand challenges from national studies and reports?
 - Does the science case include a sufficiently wide application area?
 - What is the potential for high impact publications?
- Strength of the relevant user community
 - What is the predicted demand?
 - What research communities will use this instrument? Does this instrument have the potential to expand the neutron user community?
 - Will inclusion of this instrument maintain a balanced science portfolio across the ORNL neutron sources?
- Uniqueness of STS source capabilities (cold neutrons, broad bandwidth, high brightness)
 - Does this instrument take maximal benefit of STS unique source capabilities?
 - Would the capabilities of this instrument be better enabled at another of the ORNL neutron sources?
 - Does this instrument complement the capabilities of existing instruments at ORNL?
- Quality of the proposed instrument (world-leading, competitive, other)
- Feasibility of instrument concept (only for full proposals)
 - Is there a high degree of certainty that the proposed instrument will achieve its performance goals?
 - Is there R&D required before the instrument can achieve its goals?
 - Can the instrument be built within the budget and schedule constraints of the STS project?

CAK RIDGE

Instrument selection timeline finishes with announcement of 8 project instruments

12 instrument preliminary proposals were submitted last November Proposed instruments address the science areas discussed in the First Experiments Report and in User Workshops

	Science memes/Grana Challenge Areas					
	*Polymers & Soft	*Quantum	*Materials Synthesis	*Structural	*Biology & Life	Environmental &
	Materials	Materials	& Energy Materials	Materials	Sciences	Earth Sciences
	[†] Hierarchical &	[†] Coherence in	[†] Heterogeneity	[†] Heterogeneity	[†] Hierarchical &	[†] Heterogeneity
Concept Instrument	equilibrium	Matter	Disorder	Disorder	equilibrium	Disorder
Diffractometers						Biordor
EWALD – macromolecular single-crystal					\checkmark	
PIONEER – polarized single-crystal		\checkmark	\checkmark			\checkmark
VERDI – polarized powder/single-crystal		\checkmark				
Spectrometers						
BWAVES – broadband, indirect geometry	\checkmark		\checkmark		\checkmark	
CHESS – cold neutron chopper	\checkmark	\checkmark	\checkmark		\checkmark	
spectrometer for weak signals	·				·	
EXPANSE – wide-angle neutron spin echo	\checkmark	\checkmark			\checkmark	
Large Scale Structures						
CENTAUR – SANS&WANS with inelastic	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
M-STAR – focused, polarized reflectometer	\checkmark	\checkmark	\checkmark			
QIKR – kinetics reflectometer	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Multimodal						
MENUS – multi-modal engineering beamline			\checkmark	\checkmark		
TITAN – multi-modal characterization of		\checkmark	\checkmark	\checkmark		\checkmark
materials at extreme conditions						v
Imaging						
CUPIED – imaging of fast dynamic processes			\checkmark	\checkmark	\checkmark	\checkmark
*Chapters in the Firs			the First Experim	ients Report		

[†]Themes from BESAC Grand Challenges Report

Instrument proposal teams include spokesperson, ORNL point-of-contact(s), and other researchers contributing to the science case and technical descriptions

Instrument Name	Instrument Description	Spokesperson(s)	ORNL Point-of-Contact(s)	
Diffractome	ters			
EWALD	Macromolecular single-crystal diffractometer	Gloria Borgstahl (University of Nebraska)	Leighton Coates	
PIONEER	High-resolution polarized single-crystal diffractometer	Stephan Rosenkranz (Argonne National Laboratory)	Huibo Cao & Yaohua Liu	
VERDI	Polarized Powder/single-crystal diffractometer	Stephen Wilson (University of California, Santa Barbara)	Stuart Calder & Ovidiu Garlea	
Spectromet	ers			
BWAVES	Indirect geometry spectrometer with very broad range of energy transfers	Alexei Sokolov (University of Tennessee – Knoxville & ORNL)	Eugene Mamontov	
CHESS	Cold neutron chopper spectrometer optimized for weak signals	Martin Mourigal (Georgia Institute of Technology)	Gabriele Sala	
EXPANSE	Wide-angle neutron spin echo	Yang Zhang (University of Illinois Urbana-Champaign)	Changwoo Do	
Large Scale	Structures			
CENTAUR	SANS/WANS with inelastic capabilities	Rachel Segalman (University of California, Santa Barbara)	Shuo Qian (Wei-Ren Chen original)	
M-STAR	Polarized reflectometer optimized for magnetism	Kang Wang (University of California, Los Angeles) & Tim Mewes (Alabama University)	Valeria Lauter	
QIKR	Kinetics reflectometer	Eugenia Kharlampieva (University of Alabama- Birmingham)	John Ankner	
Multimodal				
MENUS	Multi-modal engineering materials beamline for large unit/cell complex materials	Brent Heuser (University of Illinois Urbana-Champaign)	Ke An	
TITAN	Extreme environments (H,P,T) multi-modal instrument emphasizing spectroscopy and diffraction	Collin Broholm (Johns Hopkins University)	Barry Winn	
Imaging				
CUPI ² D	Imaging of fast dynamic processes in natural and engineered materials	Adrian Brügger (Columbia University)	Hassina Bilheux	

Engineering models are being developed for the 12 instruments to define geometry and equipment and support cost estimates

Monte Carlo models supporting instrument performance estimates are being developed Elliptical guide and mirror elements

Support team: Matt Frost, Thomas Huegle, Jiao Lin, Ducu Stoica lational Laboratory

L/D resolution has flux of 9e8 n/cm²/s integrated over 1.7 Å to 14 Å (white beam), 4 cm x 4 cm field-of-view

Full proposal template provides guidance to address the selection criteria

- Cover Page
 - Title, team spokesperson name, affiliation, contact information, team member names, proposal role and affiliation, and an abstract of 200 words or less.
- Science Case
- Anticipated User Community
- Instrument Description
 - Discussion of the physics parameters and design of the instrument and how they support the capability requirements derived from the science case.
 - An engineering concept illustrated through drawings that describe the geometry, desired location, and footprint of the instrument.
 - A table of key instrument components and their locations (this table will be provided by STS engineering staff).
 - Evaluation of the instrument performance typically demonstrated by Monte Carlo simulations modeling neutron transport and scattering from a prototypical sample. Analysis may also include scaling arguments based on existing instrument performance and projected source parameters.
 - Analysis of the feasibility of the instrument concept that discusses the use of existing technology and any need for R&D to realize the full capability of the instrument design.
- Use of Unique STS Source Characteristics
- Estimate of Instrument Cost (This section will be provided by STS Project staff)
- References and Team Members Biographical Sketches
- Supporting letters from researchers who intend to use the instrument
- CAK RIDGE

Next steps

- Proposal teams complete full proposals and submit by April 30
- Instrument Review Committee (IRC) evaluates full proposals during May
- Virtual meeting of IRC is being finalized for a time in the first half of June
 - Proposal teams will present instrument
 - IRC will formulate recommendation for instrument priorities
- Management and stakeholder discussions in mid- to late-June
- Proposal teams notified of final outcomes and announcement made to the user community at the end of June

Backup material

STS Instrument Systems will complete 8 world-class instruments ready to begin commissioning with neutron beams

- STS will have the capacity for 22 beamlines
- Instrument Systems includes Scientific Software that extends current reduction/analysis software to support 8 new STS instruments
- Instrument Systems includes an initial suite of sample environment equipment to support the early science programs
- Instrument Systems includes bunkers as a near-monolith, integrated shielding solution

Schematic view of the Target Building and Instrument Halls with 16 notional instruments illustrated.

CAK RIDGE

STS Critical Decision (CD) dates with PPU milestones

The roles of proposal team members are aligned with the principles for instrument selection

- Spokesperson(s) coordinate development of the science case and definition of the instrument science capability requirements, submit proposal to STS, discussions with the STS Instrument Review Committee
- ORNL Point-of-Contact coordinate development of the instrument technical/concept development and access to ORNL resources (e.g., engineering and modeling support), discussions with the STS Instrument Review Committee
- Proposal team members contribute to the science case and technical descriptions as appropriate
- Engage with STS throughout the project to provide science and technical advice at key decision points (e.g., review of the design criteria document, selection of sample environment equipment, software validation, planning for and participating in the early science commissioning of the instrument)

