Second Target Station Science Advancing Pressing Societal and Economic Challenges

Net Zero Carbon Emissions by 2050

- Clean hydrogen generation and high-energy density storage, learning where and how hydrogen is stored
- CO² separation and sustainable long-term storage, understanding how CO² behaves at a molecular level in soil and geological formations

Widespread Electrical Vehicle (EV) Adoption

- Safer, more powerful, longer-lasting batteries, watching formation and movement of critical interfaces
- Lightweight and strong, high-performing materials to lower weight, understanding interfacial interactions in composite materials

Decarbonizing the Power Sector by 2035

- Long-lived, robust, and efficient photovoltaic cells, understanding aging mechanisms
- Safe, reliable, predictable operation of nuclear reactors and new alloys for advanced reactor design, linking underlying structural changes to component performance

Advancing U.S. Manufacturing

• Predictable, confident deployment of 3D-printed components in failure-critical applications like aerospace, biomedical, and transportation, understanding the connection between intrinsic defects (e.g., voids and porosity) and component strength and durability

Materials in Action

 Scientists will observe changes in materials as they are made, as they perform, as they fail, and as underlying chemical and physical processes unfold 5-10x faster than with today's neutron sources

Managed by UT-Battelle LLC for the US Department of Energy