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Goals 

• Compare neutron imaging to other imaging 
techniques, and know when to choose it 

 

• Understand the basic instrument layout and 
principals of neutron image acquisition and analysis 

 

• Learn by example 

– Review some recent neutron imaging projects 
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Imaging throughout Nobel Prize History 

• 1901: Roentgen, FIRST Nobel Prize in Physics, 
Discovery of X-rays 

• 1979: Cormack  and Hounsfield, Nobel Prize 
in Medicine, Computed Tomography (CT) 

• 1986: Ruska, Binnig, Rohrer, Nobel Prize in Physics,  
Electron Microscopy 

• 2003: Lauterbur and Mansfield, Nobel Prize in Medicine, 
Magnetic Resonance Imaging (MRI) 

• 2009: Boyle and Smith, Nobel Prize in Physics, 
Imaging semi-conductor circuit, the CCD* sensor 
 

• (*) Charge-Coupled Device 
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What about Neutron Imaging? 

• The Nobel Prize for neutron imaging has yet to be 
won 

– An opportunity for you! 

 

• NI started in the mid 1930’s but only the past 30 
years has it come to the forefront of non-destructive 
testing 

 

• World conferences and workshops being held 
regularly 
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Obtaining a Transmission Image 

Figure from http://www.fda.gov 

Medical Imaging Neutron Imaging 
- Measures “shadows” based on neutron 

attenuation through the object 

- One shadow is a radiograph 

- These “shadows” are collected at 

different angles and reconstructed in 3D, 

called the computed tomography or CT 
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Distinctive Features of Neutron Imaging   

[M. Strobl et al., J. Phys. D: Appl. Phys. 42 (2009) 243001] Courtesy of E. Lehmann,PSI 

Neutron Radiograph of Rose 

in Lead Flask!  
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10-11 10-9 10-7 10-5 10-3 

Dimension (meters) 

0.1Å 1.0nm 1mm 0.1mm 10.0mm 

Diffraction 
Scattering Real-space imaging 

Inferred structure (indirect)  Direct structure 

SANS used to 
construct protein 
kinase A (PKA)  

Fluid 
interactions 
in plant-
groundwater 
systems 

Characterization of 
biological membranes, 
colloids, porosity, etc. 

Crystal structures 
Ice/water segregation in 
permafrost structures 

You can 
directly see 

the structure. 
 

 How easy! 

Distinctive Features of Neutron Imaging   
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Distinctive Features of Neutron Imaging   

 

Spatial 
resolution is 

limited! 

100 mm routinely available 
20 mm available with trade-off in 

field-of-view and acquisition times 
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Quantitative Neutron Imaging 

Sample Scintillator 

Lambert-Beer Law: 

CCD Camera 
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Goals 

• Compare neutron imaging to other imaging 
techniques, and know when to choose it 

 

• Understand the basic instrument layout and 
principals of neutron image acquisition and analysis 

 

• Learn by example 

– Review some recent neutron imaging projects 
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CG-1D Neutron Imaging Facility 
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Detector assembly (side view) Instrument layout 

Detector 
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Sample Area 

Sample 

(Automobile 

part) 

Rotation/ 

Translation 

Stage 



16 Santodonato - Imaging 

Detection of “Imaging” Neutrons 

• Neutron scintillators 
– Emit light after capturing neutrons 

– Good signal-to-noise ratio 

– Large Field Of View  

– Spatial resolution limited by the dissipation of particles 

 

 

Sample 

Scintillator material  

painted on back of 

aluminum plate CCD Camera 



I0



I Mirror 

at 45° 

Neutrons 

Light 

Light-tight Box 

Aperture 

Neutron 
Source 
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Detection of “Imaging” Neutrons (cont’d) 

• Micro-Channel Plate (MCP) 

– In the direct path of the beam 

– Encodes events at x, y position  
and time of arrival, at high temporal resolution ~ 1 MHz 

– Enables time-of-flight imaging 

– Detection efficiency has improved for both cold (~70%) 
and thermal (~50%) energy range 

– Absence of readout noise 

– Not as gamma sensitive 

– Becoming commercial 

– Limited FOV 
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CG-1D polychromatic beam 
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Wavelength (Å) 

CG-1D spectrum measured with the MCP detector at a flight path distance 

of approximately 5.5 m, with the chopper running at a frequency 40 Hz and 

an 5 mm aperture. [Bilheux et al., ITMNR-7, Canada, June 2012] 
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CG-1D polychromatic beam 
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Wavelength (Å) 

CG-1D spectrum measured with the MCP detector at a flight path distance 

of approximately 5.5 m, with the chopper running at a frequency 40 Hz and 

an 5 mm aperture. [Bilheux et al., ITMNR-7, Canada, June 2012] 

Neutron 

classification 

Energy 

(meV) 

Velocity 

(m/s) 

 

(Å) 

Ultra-cold 0.00025 6.9 570 

Cold 1 437 9 

Thermal 25 2187 1.8 

Epithermal 1000 13,832 0.29 
D. L. Price and K. Sköld in Neutron Scattering, Academic Press, Orlando, Fl., (1986) Vol. A. 
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Data Normalization for Imaging 

• 2D – Radiography  

– Normalization 

= 

- 

- 
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Computed/Computerized Tomography 

(CT) 

• Several techniques: 

– Filtered Back Projection 

• Radon transform 

• Works well with high signal to noise ration measurements 

• Easy-to-use commercial, semi-automated software available 

• Quick 

 

– Iterative Reconstruction 

• Direct approach 

• Less artifacts 

• Can reconstruct incomplete data 

• High computation time 
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Raw Data:  

2048x2048 pixels,  

721 projections 

Normalized Data:  

2048x2048 pixels,  

721 projections 

Sinograms: 

2048x721 pixels,  

2048 files 

Slices: 

2048x2048 pixels,  

2048 slices 

3D reconstruction: 

2048x2048x2048 voxels 

Computed/Computerized Tomography (FBP) 

 

– Filtered back projection method  

~20700 ~700 Counts 1 0 Transmission 1 0 Transmission ∞ 0 Attenuation 
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Conventional Neutron Imaging 

Techniques at Steady-State Sources 

• Radiography 

• Tomography  

• Stroboscopic Imaging 

• Imaging of processes that happen fast 

• Polarized Neutron Imaging 

• Energy selective techniques possible with 
double-monochromator configuration 

• Phase Contrast Imaging 

– Under development 

 

Routinely available at 
CG-1D 

Available at CG-1D 
using the MCP detector 

Newly implemented at 
CG-1D 
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Goals 

• Compare neutron imaging to other imaging 
techniques, and know when to choose it 

 

• Understand the basic instrument layout and 
principals of neutron image acquisition and analysis 

 

• Learn by example 

– Review some recent neutron imaging projects 
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A Wide Range of Applications 
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CG-1D Cancer Research Application 

Photograph of 
tissue sample 

Greyscale 
neutron image  

Photo of stained 
tissue slice 

Colorized* 
neutron image 
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Several Biological Tissues Have Been 

Studied at CG-1D   

• No animals are ever hurt or sacrificed for these experiments 

• Post mortem studies help researchers battle disease 

• Neutrons reveal important features 

• Non-destructive 3D evaluation      
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Forensic Science Example 
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Forensic Science Example 
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Rapid Imbibition of Water in Fractures 

within Unsaturated Sedimentary Rock 

Work performed at the High Flux Isotope 

Reactor Imaging beam line (CG1D) was 

supported by the Scientific User Facilities 

Division, Office of Basic Energy Sciences, 

U.S. Department of Energy.  

Cheng C. -L., Perfect E., Donnelly B., Bilheux H. Z., Tremsin A. S., McKay L. D., DiStefano V. H., Cai J. 

C., Santodonato L. J., Rapid imbibition of water in fractures within unsaturated sedimentary rock. 2015. 

Advances in Water Resources, Volume 77, Pages 82–89 

<http://dx.doi.org/10.1016/j.advwatres.2015.01.010> 

Time sequence of 

neutron radiographs 

showing the rapid 

uptake of water into a 

longitudinal, air-filled 

fracture zone in Berea 

sandstone. FOV is 

~28 x 28 mm2. 

• Dynamic neutron 
radiography 

– Directly quantify the sorptivity and 
dispersion coefficients of liquids in 
fractured, porous media  

 

– The findings can be applied in modeling 
hydraulic fracturing   
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Fabrication tolerance studies comparing CAD 

drawing to neutron computed tomography 

+ 

Engineering drawing               Neutron CT 

= 

In orange/yellow: AUTOCAD 

outline 

In gray: neutron data 
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Time-resolved studies 

• Rapid image acquisition and synchronization with 
operating devices 

– Micro-channel plate detector technology 

• Recent applications include fuel injector operation 
and water propagation through porous media  
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More Examples 

• More examples may be presented at the live talk 
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High Flux Isotope Reactor (HFIR)  
Intense steady-state neutron flux  

and a high-brightness cold neutron source 

Spallation Neutron Source (SNS)  
World’s most powerful  
accelerator-based neutron source 

Imaging is a Small but Growing Part of 

the ORNL Neutron Program 

CG-1D 
Steadily improving capabilities 

Expanded support 

Techniques  such as 
Bragg-edge imaging are 
being implemented here 
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Diverse Science and Engineering 

Applications 

• Trends at CG-1D are similar other facilities 

• Are we missing any opportunities? Your science! 

Based upon recent publications  
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Summary 

• Neutrons are ideal for certain imaging applications, 
especially those requiring   

– Sensitivity to hydrogen and other light elements 

– Isotope sensitivity 

– Penetration into large samples and/or sample environments 

 

• Spatial resolution is a key consideration 

– CG-1D routine capability of ~ 80 mm  

– Radiography at ~ 20 mm (with the trade-off of long counting time) is 
now available 

 

•  Imaging capabilities are steadily improving 
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Thank you 

• Lou Santodonato SantodonatoL@ornl.gov 

• Hassina Bilheux   bilheuxhn@ornl.gov 

mailto:bilheuxhn@ornl.gov

