X-ray magnetic circular dichroism and linear dichroism

Jian Liu

Department of Physics University of Tennessee A compass needle aligning itself with the earth's magnetism is an example of magnetic interaction.

Compass was invented in China ~ 2200 years ago, and first used in navigation ~1000 years ago.

Wikipedia

A compass needle aligning itself with the earth's magnetism is an example of magnetic interaction.

Compass was invented in China ~ 2200 years ago, and first used in navigation ~1000 years ago.

Technology Advancement

J. T. Heron et al. Nature, 2014

What does it take to explore advanced magnetic materials and phenomena ?

General requirements:	Technique requirements:		
see the invisible	nanoscale spatial resolution		
separate spin and orbital contributions	sensitive to s-o coupling		
study thin films and interfaces	large cross section for "signal"		
look below the surface	depth sensitivity		
distinguish components	elemental (chemical) specificity		
resolve dynamic motions	time resolution < 1 nanosecond		

Where is magnetism coming from microscopically?

State of electron in atom

$$\langle m_{\rm tot}^z \rangle = -\frac{\mu_{\rm B}}{\hbar} \left(2 \langle s_z \rangle + \langle l_z \rangle \right)$$

So far we have been talking about wavefunction or state for one electron. *What happen if we have multiple electrons?*

Pauli Exclusion Principle (1925)

No two electrons in an atom can be in the same quantum state; i.e. they cannot have the same set of values for the quantum numbers n, l, m_l and m_s

ΤΑΙ	TABLE 41.2 Quantum States of Electrons in the First Four Shells						
n	l	m_l	Spectroscopic Notation	Number	of States	Shell	
1	0	0	1 <i>s</i>	2		K	
2	0	0	2s	2] 。	T	
2	1	-1, 0, 1	2p	6	j °	L	
3	0	0	3 <i>s</i>	2]		
3	1	-1, 0, 1	3 <i>p</i>	6	18	М	
3	2	-2, -1, 0, 1, 2	3 <i>d</i>	10	J		
4	0	0	4 <i>s</i>	2]		
4	1	-1, 0, 1	4p	6	22	N	
4	2	-2, -1, 0, 1, 2	4d	10		ĨV	
4	3	-3, -2, -1, 0, 1, 2, 3	4f	14	J		

 $2n^{2}$ electrons

Completely filled orbits are very stable !

Many-Electron Atoms

Similar to hydrogen atom, but with more complicated potential due to the screening effect of other electrons (multi-body problem) State of electron in atom is defined by a set of quantum numbers: (n, l, m_l, m_s)

$$E_n \propto -\frac{1}{\left(4\pi\varepsilon_0\right)^2} \frac{mZ_{eff}^2 e^4}{2n^2\hbar^2}$$

(allowed values of quantum numbers)

TABLE 41.3 Ground-State Electron Configurations

 $n^{3}1 \quad 0 \in l \in n-1 \quad |m_{l}| \in l \quad m_{s} = \pm \frac{1}{2}$

Element	Symbol	Atomic Number (Z)	Electron Configuration
Hydrogen	Н	1	1s
Helium	He	2	$1s^{2}$
Lithium	Li	3	$1s^2 2s$
Beryllium	Be	4	$1s^2 2s^2$
Boron	В	5	$1s^2 2s^2 2p$
Carbon	С	6	$1s^2 2s^2 2p^2$
Nitrogen	Ν	7	$1s^2 2s^2 2p^3$
Oxygen	0	8	$1s^2 2s^2 2p^4$
Fluorine	F	9	$1s^2 2s^2 2p^5$
Neon	Ne	10	$1s^2 2s^2 2p^6$
Sodium	Na	11	$1s^2 2s^2 2p^6 3s$
Magnesium	Mg	12	$1s^2 2s^2 2p^6 3s^2$
Aluminum	Al	13	$1s^2 2s^2 2p^6 3s^2 3p$
Silicon	Si	14	$1s^22s^22p^63s^23p^2$
Phosphorus	Р	15	$1s^22s^22p^63s^23p^3$
Sulfur	S	16	$1s^22s^22p^63s^23p^4$
Chlorine	Cl	17	$1s^22s^22p^63s^23p^5$
Argon	Ar	18	$1s^22s^22p^63s^23p^6$
Potassium	K	19	$1s^22s^22p^63s^23p^64s$
Calcium	Ca	20	$1s^22s^22p^63s^23p^64s^2$
Scandium	Sc	21	$1s^22s^22p^63s^23p^64s^23d$
Titanium	Ti	22	$1s^22s^22p^63s^23p^64s^23d^2$
Vanadium	V	23	$1s^22s^22p^63s^23p^64s^23d^3$
Chromium	Cr	24	$1s^22s^22p^63s^23p^64s3d^5$
Manganese	Mn	25	$1s^22s^22p^63s^23p^64s^23d^5$
Iron	Fe	26	$1s^22s^22p^63s^23p^64s^23d^6$
Cobalt	Co	27	$1s^22s^22p^63s^23p^64s^23d^7$
Nickel	Ni	28	$1s^22s^22p^63s^23p^64s^23d^8$
Copper	Cu	29	$1s^22s^22p^63s^23p^64s3d^{10}$
Zinc	Zn	30	$1s^22s^22p^63s^23p^64s^23d^{10}$

How to probe partially a filled shell of an element?

- Each element may have multiple core levels.
- The core level may split due to spin-orbit coupling

X-ray absorption cross-section is given by

$$\sigma^{\text{abs}} = 4\pi^2 \frac{e^2}{4\pi\epsilon_0 \hbar c} \hbar \omega \frac{|\langle b| \epsilon \cdot r |a \rangle|^2}{\gamma} \frac{\delta[\hbar \omega - (E_b - E_a)]}{\text{Energy Conservation}} \rho(E_b)$$
Transition Probability Density of States

The polarization dependent X-ray absorption resonance intensity in the dipole approximation is given by

$$I_{\rm res} = \mathcal{A} |\langle b | \boldsymbol{\epsilon} \cdot \boldsymbol{r} | a \rangle|^2$$
 Integrate over the empty states in $\rho(E_b)$

Obviously, it depends on the electric field direction.

Electron position: $\mathbf{r} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$

Electric field unit vectors of linearly polarized light:

$$\boldsymbol{\epsilon}_x^0 = \boldsymbol{\epsilon}_x = \boldsymbol{e}_x \qquad \boldsymbol{\epsilon}_y^0 = \boldsymbol{\epsilon}_y = \boldsymbol{e}_y \qquad \boldsymbol{\epsilon}_z^0 = \boldsymbol{\epsilon}_z = \boldsymbol{e}_z$$

Electric field unit vectors of circularly polarized light:

$$\epsilon_z^{\pm} = \mp \frac{1}{\sqrt{2}} (\epsilon_x \pm i \epsilon_y)$$
 $\epsilon_z^0 = \epsilon_z = e_z$
(Photon angular momentum equal to 1.)

Dipolar operator:

$$P^q_{\alpha} = \boldsymbol{\epsilon} \cdot \mathbf{r} = \boldsymbol{\epsilon}^q_{\alpha} \cdot \mathbf{r}$$

For example:

$$P_z^{\pm} = \boldsymbol{\epsilon}_z^{\pm} \cdot \mathbf{r} = \mp \frac{1}{\sqrt{2}} \left(x \pm iy \right) = r \sqrt{\frac{4\pi}{3}} Y_{1,\pm 1},$$

$$P_z^0 = \boldsymbol{\epsilon}_z \cdot \mathbf{r} = \qquad z \qquad = r \sqrt{\frac{4\pi}{3}} Y_{1,0}.$$

Racah's spherical tensor operators are defined as

$$C_m^{(l)} = \sqrt{\frac{4\pi}{2l+1}} Y_{l,m}(\theta,\phi) \xrightarrow{\text{for photon}} C_p^{(1)}$$

Transition Probability: It depends on spin, orbital, and the x-ray polarization!

For example:

$$P_z^0 = r C_0^{(1)} = r \cos \theta = z,$$

$$P_z^{\pm} = r C_{\pm 1}^{(1)} = \mp r \frac{1}{\sqrt{2}} \sin \theta e^{\pm i\phi} = \mp \frac{1}{\sqrt{2}} (x \pm iy)$$

Racah's spherical tensor operators are defined as

$$C_m^{(l)} = \sqrt{\frac{4\pi}{2l+1}} Y_{l,m}(\theta,\phi) \xrightarrow{\text{for photon}} C_p^{(1)}$$

Transition Probability: It depends on spin, orbital, and the x-ray polarization!

The dipole selection rules for transitions between states of the form $|n, l, m_l, s, m_s\rangle$ are: $\Delta l = l' - l = \pm 1,$ $\Delta m_l = m'_l - m_l = q = 0, \pm 1,$ $\Delta s = s' - s = 0,$ $\Delta m_s = m'_s - m_s = 0.$

Orientation-Averaged Intensity

Tunable x-rays offer elemental specificity

Rich "multiplet structure" reveals local bonding

The charge sum rule: $\langle I
angle = C \, N_{
m h}$

X-ray Magnetic Circular Dichroism

X-ray Magnetic Circular Dichroism

- *The intensity depends on x-ray polarization.*
- This dependence is opposite between L_3 and L_2 .

XMCD spectra of the pure ferromagnetic 3d metals

Defining the difference: $\Delta I = I^{\uparrow\downarrow} - I^{\uparrow\uparrow} = I^- - I^+$

J. T. Heron et al. Nature, 2014

$$\Delta I_{L_3} = \mathcal{AR}^2 \sum_{n,m_j} |\langle d_n, \chi^+ | C_{-1}^{(1)} | p_{3/2}, m_j \rangle|^2 - |\langle d_n, \chi^+ | C_{+1}^{(1)} | p_{3/2}, m_j \rangle|^2$$

$$\Delta I_{L_2} = \mathcal{AR}^2 \sum_{n,m_j} |\langle d_n, \chi^+ | C_{-1}^{(1)} | p_{1/2}, m_j \rangle|^2 - |\langle d_n, \chi^+ | C_{+1}^{(1)} | p_{1/2}, m_j \rangle|^2$$
Polarization dependent ρ to $d(\mathbf{f})$ transition intensities
$$d_{z,z'} = d_{z,z'} = d_{z,z'}$$

Fundamentally, XMCD requires SOC in the core level or the valence state or both.

The sum rules

Polarization, Charge and Spin: X-Ray Magnetic **Linear** Dichroism

Non-magnetic state

$$\boldsymbol{\epsilon}_x^0 = \boldsymbol{\epsilon}_x = \boldsymbol{e}_x \qquad \boldsymbol{\epsilon}_y^0 = \boldsymbol{\epsilon}_y = \boldsymbol{e}_y \qquad \boldsymbol{\epsilon}_z^0 = \boldsymbol{\epsilon}_z = \boldsymbol{e}_z$$

Magnetic state - preferred spin axis

spin-orbit coupling distorts charge creates polarization dependence

Lüning et al. Phys. Rev. B 67, 214433 (2003)

Unequal populations occur when the moments pick a specific axis.

The *XMLD effect* arises from a nonspherical distortion of the atomic charge by the spin–orbit interaction when the *atomic spins* are axially aligned by the exchange interaction.

$$\Delta I_{\text{XMLD}} = I^{\parallel} - I^{\perp}$$

= $\mathcal{AR}^2 \sum_{n,j,m_j} \left| \langle d_n, \chi^+ | C_0^{(1)} | p_j, m_j \rangle \right|^2 - \frac{1}{2} \left| \langle d_n, \chi^+ | C_{-1}^{(1)} - C_{+1}^{(1)} | p_j, m_j \rangle \right|^2$

- Orbitals have anisotropic shapes.
- The transition probability of a particular orbital depends on whether the polarization is along its principle axis.
- For equally populated orbitals, $I^q_{\alpha} = I^q_{\alpha'} = I^{q'}_{\alpha}$

Powerful in studying antiferromagnetic spintronics

Images of the Ferromagnet-Antiferromagnet Interface

Summary:

- XMCD and XMLD exploits advantages of XAS
- Provide sensitivity to the spin and orbital degrees of freedom
- Particularly suitable for complex magnetic materials and structures
- Can be used to probe different magnetic orders
- Relatively easy to implement magnetic field
- Compatible with imaging techniques