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OUTLINE: AI4SCIENCE

Al4Analysis Al4Steering Al4Knowledge

E tlsop Ice 4 at T=77 K3

ML-BOP,

Exp
2 3 4 5 6 7 8 9
'.‘H ;or Lqudal T 254K

Y Position (um)

Exp_ ML-BOP,,

BEJ M0
; e o % 2 3 4 5 6 7 8 9
m P oYy v
- rh)

‘

- 2

X Position (um)

= >100X faster and = Self-driving experiments Get more out of data

(sometimes) more & instruments: Faster more accurate

accurate analysis — maximize info gain in models, sharper images
minimal time etc

» Enables real-time
analysis on Gb/s data

streams
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MOTIVATION 1: DATA RATES AND COMPUTE
NEEDS

Data & compute

Estimated APS Data Generation Rates Per Year
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Fiscal Year

A single instrument (e.g Ptychography) can
generate data >GB/s

* Need ~PFLOPs to analyze

APSU: 10-1000X increase in data and compute needs
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http://archive.synchrotron.org.au/images/AOF2017/Boland---
AOF---Future-light-sources-2017-05-29.pdf

Data & compute rates outpace Moore’s law
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MOTIVATION 2: REAL-TIME FEEDBACK
Experimental steering

m Al decision making,
imaging, and failure

analysis.

Autonomous experiments need
real-time data inversion
Need to invert data on order of
seconds or less
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y %
Crack X-ray imaging
formation

Materials in
action
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MOTIVATION 3: INVERSE PROBLEMS IN
MATERIALS CHARACTERIZATION

q)-—-o IMAGING TAKING A SNAPSHOT

Synchrotron X-rays allow us to take an image of a sample. By studying
the interaction of light with an object, we are able to get information
about the structure or the function of whatever we are imaging. Our
beamlines can take a picture of the tiny airways in a lung or get a
three-dimensional image of materials like steel pipelines.

E.g.: Projections -> 3D image

©- — SPECTROSCOPY = | ==
ANALYZING THE CHEMISTRY  ¢- |

Spectra -> chemical composition

We can see how different wavelengths of light interact
with matter, allowing us to analyze what the sample is
made of. With spectroscopy we can look at the matter

o
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inside of a lentil or model the molecules that exist in space.

|
|
|
|
|
©<DIFFRACTION AND SCATTERING
UNDERSTANDING THE STRUCTURE

Sometimes light can bounce off a sample and create a unique pattern.

This pattern allows us to gain insight into the structure of the object. With
diffraction and scattering we are able to understand the shapes of proteins
inside of living things or visualize the structure of crystalized materials.

Diffraction -> atomic structure

Inverse problems are computationally expensive!

Argonne & |75
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WHY MACHINE LEARNING?
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LEARN FROM DATA

Transform |
Classical
lnputs programming
A\

_Inputs [
Outputs Supervised ]Jmn;lazm
(N
Inputs Outputs
Learnt Transform

ML lets us solve problems that we cannot with traditional methods
e Just need data M{ Unsupervised ]M
« APSU will have LOTS of data
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TRAINING A NEURAL NETWORK: SUPERVISED
LEARNING

—_— W) = (I)A.Hul
) ¢ (error term of the output layer)
InpUtS (compute gradient) 83 =a® -y
Weights
Net input Activation @ @
funtion funtion O
output 7

@ > 0.0 Input x O O i \output S
"

a9(z?)
@) = (W) 53 529
5 (w®)'s =)

(error term of the hidden layer)

* Gradient descent ‘writes code’

we just provide data
(ENERGY (o s, J P 8 Argonne 6 ‘ 75




DEEP LEARNING — MORE THAN A NEW TOOL
The advent of ‘Software 2.0’

Hardware Software Data
Stack Stack Stack

Founder: Netscape & Andreessen-Horowitz (>$10 billion AUM)

Marc Andreessen
Creator: Mosaic browser

Gradient descent can write code better than you. I'm
sorry.

Andrej Karpathy
Dlrector of AI Tesla
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AI4ANALYSIS: COHERENT IMAGING
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ML IN PRODUCTION

Al-accelerated User Tools

CDI Reconstruction - o x
Working Directory | /CXDUSER/ai_test/cohere-scri | beamline |aps_34idc |
Experiment D |NX_YY_data | spec file Jhome/beams7/CXDUSER/34idc-data/2019/NX2019/NX2019a.spec |
scan(s) |350 |
[Ioad i } [set i } [run ything
D CNN ERARIrE) SN RRR RS
32x32x32x64 Predicted amplitude initial guess Al algorithm |
) . 16x16x16x128 Al init shrink wrap threshold |
Input diffraction 64x64x64x32 Bxas8azee Alinit shrink wrap sigma | |
32x32x32x64 Al trained model file ! 7/CXDUSERai_t ined_model.hdf5 |
Z16x16x16x128 i J

| add configuration

8x8x8x256
! g5 v

. . -
dxdxax512 Predicted phase processor type R

device(s) (0.1)

Al4Analysis

\
\
6464064 " ch "‘“'"T;nf — (110 ("ER", 20 ), ( "HIO", 180) ), ( 1, ( "ER", 50)) ) :
y onv. . 3DC algorithm sequence , ("ER", . ( "HIO", TR
/&i}]}{ﬁ(}:\éN'Upsamplmg +S|g?r?<;,1d HIO beta 0.9 ]
( Max pooling = Zero paddmg‘ 3D Conv. initial support area 1(0.5,0.5,0.5) |
4 | set to defaults |
GA M
low resolution active
shrink wrap
phase support
pedi
twin
e
progress
[ Load rec conf from H run
Yao, Y., Chan, H., Sankaranarayanan, S., Balaprakash, P., Harder, R. J., & Cherukara, M. J.
(2022). AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg
coherent diffraction imaging. npj Computational Materials, 8(1), 1-8.
DEPARTMEN" OF Argonne Natlona\ Laborstovy isa
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COHERENT DIFFRACTION IMAGING

X-ray Coherent diffraction imaging (CDI)

* Resolution improves with smaller wavelength
 High penetration power

Coherent X-ray beam « Coherent-based, lensless imaging

g —_— Resolution not limited by optics

> ”

g —_— Different CDI geometries and modes

< Object A ; B c

A ’ oy o S
< Pinhole optic cpertQ l

Sample

Detector

Diffraction pattern

Computational lens

Miao, Jianwei, et al. Science 348.6234 (2015): 530-535.
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COHERENT DIFFRACTION IMAGIN

X-ray CDl application Semiconductors characterization \

. N
Battery materials
m <-0.80 M. >-0.45 ;-osoph_( " >-0.60 :oao— 060 B s OV e B Femy SRV Nl g g L3360V
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g Genoud, S. et al. Chem Sci 11, 8919-8927 (2020). @ O=&=
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Bhartiya, A. et al. Chromosome Res 29, . : : . " — . : . y Q'
107-126 (2021). S i L 7 S
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Liu, T. et al. Nature 606, 305-312 (2022). Sopseenertem
/ Kim, Dongjin, et al. Nature communications 9.1
. (2018): 1-7.
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COHERENT DIFFRACTION IMAGING

Diffraction
pattern

Transmission function ‘ Diffraction pattern >

0= Aei® _ I = |F{y}I? —
Phase retrieval

i Transform
Object I Measurement ¥

What’s reconstructed? What’s measured?

)
»
=
®
-
S
<

Refractive index: n=1-—6+if
0(r) Intensity of the diffraction signal

V= lpoelknt - lpoelk(l_SHﬁ)t ~enieTet Phase information lost

Absorption contrast: A = |0(r)| = e kAt

Phase contrast: ¢ = Arg(O(r)) = —két

Argonne &(73




PHASE RETRIEVAL-COMPUTATIONAL LENS

* Fundamental requirement to recover an image of object
* Provide phase imaging
Better contrast modality in hard x-ray

Object Measured diffraction

Start point t "
(random Revised ¥ m— F(y)
initialization)

)
»
==
®
<
A
<

Real-space Reciprocal space
constraint constraints
F(y)
Ji
Present ¢ ﬂ TFap)]
(ZENERGY (ot Error-reduction (ER), Hybrid input-output (HIO), et al Argonne &(75
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ML FOR PHASE RETRIEVAL

Iterative phase retrieval method Deep learning

Compleximage Measured intensity
(Output) (Input)

64X64X1  gangana2 AmplltUde

32x32x32

f l | Measured

intensity

Revised ¥ F(y)

- Max pooling

Real-space . Upsampling
> T l VI constraint [l convolution 32x32x32
constraint

)
»
=
®
<
A
<

T Fa

Present 3 TFap)]

Direct inversion

: : v' Faster data inversion speed
= Computationally expensive

= Sensitive to the initial guess and

choice of algorithms = Need for a large volume of labeled

training data

"%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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AUTOPHASENN

Unsupervised NN for 3D BCDI phase retrieval

Input diffraction

64x64x64

64x64x64x32

Training
Estimated diffraction| /1o i1

3D Conv.

+LRLU+BN

+ Tanh

+3D Conv. Upsampling ’iDSi(;fo‘;d

ﬁMax pooling ﬁZero padding‘ 3D Conv.

3D CNN 64x64x64%32

32x32x32x64 I
16x16x16x128 =2~
27 4 <

x8x256

|
|
8

Predicted amplitude

—>

Predicted phase

-

3D convolutional neural network:

<

Learn the inversion from input intensity to images of object

Forward model:
Eliminate the need for ground truth image in

training

17



Al4Analysis

AUTOPHASENN

Training data generation

Simulated data

(b)

random
clip planes

—_—

molecular

simulator
\ )

faceted crystal

FCC lattice (~500 k atoms)
d)

Fourier
transform

energy minimized crystal

diffraction pattern
(input)

Chan, Henry, et al. Applied Physics Reviews 8.2 (2021): 021407.

Experimental data

detector
(Timepix shown)

Looking upstream towards the source

upper
accessory rail

lower
accessory rail

mmmmm

“Diffractometer”
detector positioning

Sample Goniometer and other
close proximity components

Acquired at 34-ID-C at APS

104k training data
~12 hours training time on 8 A100 GPUs (40GB)

Argonne &
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AUTOPHASENN

Network performance with simulated data

(¢) Diffraction (d) Ground truth (e) Phase retrieval (f) NN prediction (g) Refined

. . 600 iteration (HIO+ER) 50 iterations (ER) 314
Tested on ~2k simulated crystals (not seen during the o '
training) — 5
=] : s
7 = &
SSIM = 0.9760 SSIM = 0.9856 ssIM =09877 &
7)) 7 =0.0028 7 =0.0087 0.0025
"7’ 3.14
> <
— _____________'_ ________________ E
© Refinement &
c SSIM = 0.9432 SSIM = 0.9366 SSIM = 0.9919
< ¥ =0.0027 7 =00121 ¥ =00024 314
< 3.14
< Initial object
A
Initial support ‘ ‘ ‘ 2
Final SSIM = 0.9903 SSIM = 0.9893 SSIM = 0.9901
» 50 iterations of ER » rasult ¥ =0.0065 7 =0.0202 ¥ =00061 314
result —
Diffraction "
pattern g
_______________________________ SSIM =0.9720 SSIM = 0.9736 SSIM = 0.9998
7 =0.0104 © =0.0259 7£=0.0079 -3.14
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AUTOPHASENN

Network performance with experimental data

samplel sample2 sample3 \Jlll')|t4 samples

@ - —:
Phase retrieval |
_‘2 3 ¥ =0.0026 ¥ =0.0054 ! Ve ol ¥ =0.0027 j 1.0F PR iﬂ:ple ’ inlple ! i’flple ’ iﬂlple ’ i"ll"e 1 =
w (b) : 3 Refined ~—— p— p— — —_ ;
= 1 -
© NN prediction | ol
c 100X _ 01 1
< speedup | ugJ ;
<t A 1
Z - 0.0396 % =0.0330 0,01k :
(c) | -
Refined : 0.002- N :
e Tf00 200 300 400 500 600
peccor. Iteration
1 £ =0.0020 % =0.0053 1 % =0.0030 % =0.0037 % =0.0024
‘-3|4_ 304 304 — 304 ‘AH_ 104 04 — 34 304 — 214
@ (rad) @ (rad) @ (rad) @ (rad) @ (rad)
U 100x speed up compared to conventional iterative phase retrieval
U Combined with the refinement, the result is comparable/slightly better to the
traditional phase retrieval while being ~10 times faster.
(W ENERGY U533 Eriiney Argonne & |75
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Activities  Applications v Places v

+ % 4 | ai_test_2022 | cohere-ui-main

Name

cohere
Documents

cohere-ui-main

™ trained_model.hdf5

File Edit View Search Terminal Help
-bash-4.2% <base>

Al4Analysis

[] Terminal [(Fij Is Just) ImageJ] B [ParaView 5.9.0]

Terminal




BRAGGNN: AI@EDGE FOR HEDM

Today: 1000 cpu-hours per scan (20 mins)
Orientation map Center-of-mass Orientation & strain APSU: 10,000 CpU—hOUf’S per scan (30 S)

Average orientation distribution
Average strain

Very far-field
/‘”\ \wld y
Near-field <, - v.

BCDI

Grain shape
Orientation & strain
distribution

BCDI (sub-grain resolution to 10
nm)- distant detectors better resolve
fringes

o
(7]
S
)
5
i
=

nf-HEDM: full-sample
grain maps with
orientation

f-HEDM: full-sample grain A= | https://www.andrew.cmu.edu/user/suter/HEDM
maps with strain i || . 9 Tools.html

Slide contents from: J. Almer, H. Sharma B. Suter et al.




Al4Analysis

BRAGGNN: AI@EDGE FOR HEDM

1) samples added to " of t m\r’ ‘data/users/zhengchun. 1iu/peaks h:, now rm rln'\nm 1, 1 LR
Lz‘\w, 5 znrr, es']) have been ruh\wwd via ZMQ Nor i .
ples added to of /net/wol/data/users/zhengchun rom has (111971 R i
dict_keys(['ploc’, ;\nmm 1) have been run\‘.wa v - .
patches was infered in 0.446 ms (computing: & B
Deep CNN that outputs peak position e e it e i o e o, , s
f 32 patches was {nfered in 0.519 s Ccomputing: 0.409 ms), 1 batches pending infer £

‘patches']) have been published via 24 Non

200X faster and more accurate than o e ;"f;;ff,‘[’,j‘j‘f:]\; m EL5TT

o of /net/wlf/dot Mm,,mu‘ hun. 1iu/peaks.hS, now has (1119744, 5)

pseudo-Voigt fitting Py T e Loy

AI Ed t H d t 2 1 > net/vol 1/data sttt s 5 1
ge processes streaming adata il edori of snet /shrgchn- ks 5, 1ot 11954, 3 .
1, LY m\r, ‘data/users/zhengchun. liu, s. "Sr now has (1 ) -
5 i o “ploc’ of net/wa/datausers/shengchun. Lu/pec [ 72
11, 11> samples added to "patches: of /net/ol/datasusers,
3 sarples added to 'ploc’ of /net/wolf/datalusers/zheng
“patches" of /net/wolf/data
“ploc’ of /net/nol/data/users/zhengchun. Liu/peaks.hS,
5 added to ‘patches’ of /net/woLf/data/users/zhengchun. /b

0° bash 1- bash 2 bash 3 4 bash

I., 2022. BraggNN: Fast X-ray bragg peak analysis using deep learning. IUCrJ, 9(1).

Liu, Z., Sharma, H., Park, J.S., Kenesei, P., Miceli, A., Almer, J., Kettimuthu, R. and Foster,

Clear

1sragg veaK viz Tor MELM experiment

Peaks found: 1,568

S 3
. .
2 .

£ ] K

Fa




AXEAP: ARGONNE X-RAY EMISSION ANALYSIS
PACKAGE

High
* Converts emission data into
spectra in real-time using
Unsupervised ML.
72)
.a Low
>
©
c nov v on V-1 n
< B
<
Hidden
* NN predicts oxidation and spin Layer
state from XES spectra
Output
Layer

Predicted Class

Inhui Hwang, Chengjun Sun et. al., ANL software disclosure SF-21-050
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AI4STEERING
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SMART DATA ACQUISITION

Experiment:

* Scanning Bragg diffraction imaging
(008 peak) of layered material
(WSe,)

Problem:

* Given an unknown sample, how
should we acquire data to maximize
information gain in minimal time?

(@)
c
g
()]
(V]
b
7p]
A
<

Approach:
+ Sample a few (~1%) points randomly

» Use a pre-trained NN to predict the
most important points to acquire.
* Decision is made in ~ 1s

Result:
» Al approach reconstructs image with

*4’;\&%:\ U.S. DEPARTMENT OF _ Argonne National Laboratory is a
404 G U.S. Department of Energy laboratory
ZSENERGY 22 0sitysaitios eme '

Saugat Kandel, Tao Zhou etal. | 7 Oonaussommmonr | ssezem




(o))
c
=
(]
(V]
]
(7p)
A
<

SMART DATA ACQUISITIQRM pT—

Al@Edge drives mstrument
nxw;r rr";l AL' 7”' ,‘}

>

NVIDIA.

13 Google Al

NN inference @ edge

Route optimization

Saugat Kandel, Tao Zhou et al.

(% ENERGY 2%

‘Ground truth’: 100 nm steps

. 5 !
| “i.‘
4 3X Iess pomts

Locations chosen by Al to scan
- Each yellow dot is a scan point

Argonne & |75



Al-GUIDED ACQUISITION AT NANOPROBE

26-ID Beamline v0/27/22 00:36:08
EES

NPI HYBRID MOTION

Storage Ring

261D-A

Energy: 10399.9970 ey
99 TH: 2,500 aes

(@)
c
=
(]
(V]
]
7p]
A
<

(2 ENERGY (s, Argonne &
7 et By et ey g
- menaged by UChicego Argomne, LLC Saugat Kandel, Tao Zhou et al. NATIONAL LABORATORY
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AUTOFOCUS: AUTOMATED BEAM FOCUS AND

ALIGNMENT

y (um)

-80
-60 -40 =20 o
X (4 m)

20

40

Optimize

y (um)

60

o
X (um)

Optimized Mirror focusing

‘Digital Twin’ of beamline in Oasys

Saugat Kandel, Luca Rebuffi et al.
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A
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ACCELERATOR TUNING AND FAULT MITIGATION

Al for efficient accelerator operation
« Achieve and maintain optimal accelerator performance
through reinforcement learning (RL) and Bayesian

optimization (BO).

« Designed a fully integrated ‘digital twin’ environment for
simulation and debugging based on experimentally

collected data.

« Experimental benchmarks have demonstrated new
methods to be faster in recovering full performance of
the accelerator after a perturbation.

Al to predict power supply trips in the storage

ring:

« Advance warning about an impending PS trip so that
preventive action can be taken by the accelerator
operator or by the PS maintenance group.

* Models trained on historical data since 2001.

« Anomaly detection through autoencoders.

“. % U.S. DEPARTMENT OF _ Argonne National Laboratory is a
@ ENERGY U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

Yine Sun, Nikita Kuklev, lhar Lobach et al.
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TOMOGAN: DENOISING + ARTIFACT REMOVAL

A Image acquisition B 2D projections of sample

”Tlage
Output
0= 0°

detector

TomoGAN

m source sample o

——

; C Reconstruction
o 1) Filtered backprojection
! i) 3D volume i) cross-sectional 2) Iterative reconstruction
q. rendering "slices"

<

Image from: O'Sullivan, James DB, et al. "X-ray
micro-computed tomography (UCT): an emerging
opportunity in parasite

imaging." Parasitology 145.7 (2018): 848-854.

* Generative adversarial network for denoising and artifact removal
» Upto 1/16™ less dose or projections

Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F. and Foster, I., 2020. TomoGAN: low-dose
synchrotron x-ray tomography with generative adversarial networks: discussion. JOSA A, 37(3), pp.422-434.
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LEARNING MATERIAL MODELS FROM -
XRAY DATA

Opportunity R e anseacae

;;; ML-BOP;, :

» Build better materials models 0 s VP VA M

» Machine learnt materials models fit to experimental data 3E AML-BOP  Liquidat T=254 K3

« Eg Water model: x-ray data (C. Benmore) ﬁf Exp_ ML-BOP;
ol

Results

a 1.04p
1.02F
THE JOURNAL OF

PHYSICAL L00F

- 1 » BLAST ML framework for % o S e

)
=)
O
9
3
o
c
A
A
<

TIP4P/2005 *

Jm"j model development o9k ] s

SN > 10 widely used models for °% | ] !

: . . 0.92F | Exp (ice 1) ] ;
2D materlals, oxide 0 o0k MPAPlc G fj7 7o | TIPAP200S Gice 1) 3 g SUTESTEEES IS § AT
materials, water etc. 5 - : 300 350 10°/T (K1)

Our water model: ~highest scoring, ~least expensive

~Chan, H., Cherukara, M. J., Narayanan, B., Loeffler, T. D., Benmore, C., Gray, S. K., & Sankaranarayanan,
dEpii S. K. (2019). Machine learning coarse grained models for water. Nature communications, 10(1), 1-14.Argonne & |75
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LEARNING MATERIAL MODELS FROM
DIFFRACTION DATA

* Active learning:
« Obtain an atomic models that reproduces

Diffraction Experiment

) _ -
_g: the measured x-ray data with quantum f ool
i) mechanical accuracy \J \f'\,\/“ v :
; Structure, Dynamics
o « ML scheme uses an automated closed loop i S
% vi.a an gctive-learner, which is initializeq by ‘\\ T“‘da{i.,;’:;‘?g‘a‘g“g ‘_'.\
> diffraction measurements, and sequentially .:.'. Se _— "
improves an unsupervised ML model using = 8.8.9 MG
a Gaussian Approximation Potential (GAP) e e
approach

Sivaraman, G., Gallington, L., Krishnamoorthy, A. N., Stan, M., Csanyi, G., Vazquez-Mayagoitia, A., & Benmore, C. J. (2021).
Experimentally driven automated machine-learned interatomic potential for a refractory oxide. Physical Review Letters, 126(15), 156002.

Sivaraman, G., Guo, J., Ward, L., Hoyt, N., Williamson, M., Foster, I., Benmore, C. and Jackson, N., 2021. Automated development of
molten salt machine learning potentials: application to LiCl. The Journal of Physical Chemistry Letters, 12(17), pp.4278-4285.

2 U.s. DEPARTMENT OF _ Argonne National Laboratory is a
U.S. Department of Energy laboratory A 7
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FEEDBACK

Lecture — 2:15 - 3:15
Al impacting experiments and analysis — Yudong Yao & Mathew Cherukara
https://forms.office.com/g/GzVHXHCSBg

aaaaaaaaaaaaaaaaaaaaaaaaaaa




