Engineering Neutron and X-Ray Diffraction

Don Brown

dbrown@lanl.gov

Additive Manufacture is of Particular Interest to the Nuclear Weapons Complex

- AM is most efficient when applied to manufacture of small lots of complex geometries with minimal footprint and overhead investment...
 - ...once the process is qualified.
- AM can be agile and produce single parts for specific applications or experiments.
- Can we design specific functionality into components?
- But how do you qualify components made with a completely new technology?
- Our team is trying to play its roll in this task by using neutron and x-ray scattering techniques to monitor microstructure throughout lifetime of a component.
- So called Process/Structure/Properties/Performance relationship.

AM Inherently Spans Several Orders of Magnitude in Length and Time Scale.

- Quench rates following deposition can reach ~ $10^6 K/sec$, pushing for phase quantification on µsec time scales.
- As material is subsequently added, temperature excursions can last as long as seconds.
- Post-build heat treatments last ~hour.
- Residual stresses build up over the duration of the build, hours.
- Their effect on performance can manifest in days-years.
- Dislocations, which control the material strength, exist on the atomic scale (Å).
- Phase topographies and grains are on ~μm scale.
- Powders are typically 10's of μm.
- Residual stresses are set by the length scale of the component, i.e. cm's.

Neutron Sources Do Not Sit on Desktops!

Los Alamos Neutron Science Center: LANSCE

Lujan Neutron Scattering Weapons Neutron Research Center Facility Isotope Production Facility

Proton Radiography

Time of Flight Diffraction at a Spallation Source

vector.

25

Time of Flight (msec)

30 35

Two Types of Measurements

- Residual stress measurement:
 - You know the stiffness tensor and want to determine unknown stress
- Lattice response to external stimulus:
 - You control the stresses and you want to learn about the springs (bonds)

Lujan Scattering Team Utilizes Other Tools As Appropriate

High Energy X-Ray Diffraction Probes the Bulk of the Material

Temperature And Stress Have Distinct Effects on the Diffraction Rings

Example of Residual Stress in U10Mo Thin Foil

$$\varepsilon = \begin{cases} -8.1 & 1.4 & -0.5 \\ 1.4 & -16.0 & 1.0 \\ -0.5 & 1.0 & 12.8 \end{cases} \times 10^{-4} \pm \begin{cases} 0.3 & 0.3 & 0.3 \\ 0.3 & 0.2 & 0.3 \\ 0.3 & 0.3 & 0.4 \end{cases}$$

We Use Diffraction Like A Bathroom Scale

- We measure the spacing between atoms very precisely: ~ 1 part in 10^5 .
- Calculate lattice strains (elastic) from change in atomic spacing.

$$\varepsilon = \frac{d_{hkl} - d_0}{d_0}$$

- ullet Generalized Hooke's Law $: \sigma_{ij} = C_{ijkl} arepsilon_{kl}$
- It is important to note that the lattice strain is necessarily proportional to the stress on the grain, not the macroscopic stress.

Diffraction Separates Response of Grain Orientations

- Grains with plane normals parallel to the diffraction vector defined by the instrument geometry diffract into a detector.
- Each grain orientation (hkl), or phase, contributes to a distinct peak, given by the interplanar spacing.
- We explicitly make the assumption that a family of grains can be used to represent the macroscopic stress field.

Los Alamos

We Need to Step Back And Consider What Diffraction Tells Us

Polycrystalline Aggregate

- Each diffraction peak samples grains with a common orientation.
- Many sample and crystal directions can be monitored.
- But cannot link peaks from different sample directions to unique grain sets.
- To calculate stress, I must assume that the differently oriented grains are under the same stress.

 Los Alamos

Lets Consider How a Composite Responds to Deformation

• Microstructure represents loading 2 constituents in parallel, total strains must be equal.

$$\varepsilon_T = \varepsilon_e + \varepsilon_p$$

- In elastic regime, lattice strains are equivalent.
- Once plasticity begins in one phase, the elastic lattice strains are no longer constrained to each other.

 Los Alamos

Understand Anisotropy in Terms of a Composite

- This is how a composite is designed to work.
- With release of the macroscopic stress, there is a residual stress in each constituent.
 - The phases stresses are not representative of the macroscopic stress state.

Los Alamos

• However, a weighted average would be representative.

Polycrystalline Samples: "The Mother of All Composites".

- •Above yield point, elastic strains in (311) orientation saturate.
 - Grains with (311) parallel to the load direction are yielding.
 - Load is redistributed to the (200) orientations.
- This is a general result seen in FCC metals.
 - Indicative of the specific deformation mechanism.

There is a Long Time Strategy to Deal With Anisotropy

- Elastically anisotropic, but that just effects the stiffness you use.
- Plastic anisotropy will lead you to the wrong answer.
- Tom Holden has told us all not to use the (002) and (111) for FCC's.
- Solution: (311) reasonably represents the macroscopic stress state.
- The lattice parameter found from Rietveld refinement represents the bulk very well.

 Los Alamos

But What Can We Obtain From a Dynamic Measurement During Deposition?

$$\begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix} = \begin{pmatrix} \varepsilon_h & 0 & 0 \\ 0 & \varepsilon_h & 0 \\ 0 & 0 & \varepsilon_h \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} - \varepsilon_h & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} - \varepsilon_h & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} - \varepsilon_h \end{pmatrix}$$

Portable Additive Manufacturing Platform Developed for In-Situ Studies on X-ray and Proton Beamlines

- Objective is to characterize the deposited material (and substrate) as the process is happening (in-situ).
- Cold Metal Transfer (CMT) weld process.
 - Like MIG but better controlled.
- 1ID @ the APS
 - E=71.67keV, λ=0.171Å
 - ~2 factors of e absorption.
 - Beam size 0.05-0.2mm for diffraction (could be smaller)
 - 1x2mm for imaging (largest FOV)
 - Rotating wheel speed ~1mm/sec

3 Types of In-Situ Measurements Were Completed on 1-ID

Ordered in increasing complexity and increasing information...

- Stationary substrate (wheel) with ~1 second deposition.
- Rotating wheel with incident x-ray spot fixed.
 - Multiple tests with different lateral beam positions.
- Rotating wheel while moving x-ray spot.
 - Multiple tests at different beam heights.

Others you will not see today...

- Post deposition residual stress measurements
- Measurements in wheel below deposition
- Laser re-melting of previously deposited material.

Scale Relationships Between Sample and Probe Size

- Diffraction count time and spot size were dictated by statistical sampling of grains in integration volume.
 - Usually 1sec, sometimes 0.1sec (attenuators in beam).
- Imaging 0.1sec integration, limited by statistics.

Additive Manufacture

- Liquid with solid nuclei
- Integrated pattern shows sharp and broad peaks

Los Alamos

- Liquid and solid coexistence.
- Continuous, nearly uniform rings
 - Small grains, no texture.

- Textured solid.
- Continuous but non-uniform rings
 - Small textured grains

- "Spotty" rings.
- Solid with large, annealed grains.
- Texture still evident.

The Dropping of a Cow Pattie

Diffraction Used to Monitor the Microstructure of the Material During Deposition

In-situ diffraction probes phase evolution following deposition

- Liquid observed
- Pattern is spotty, grains are "large".

Diffraction spot 0.8mm from rim

Diffraction Used to Monitor the Microstructure of the Material During Deposition

- In-situ diffraction probes phase evolution following deposition
 - No liquid observed, rapid solidification.
 - Rings are more continuous, grains are smaller

Diffraction spot 0.1mm from rim

Quantitative Microstructural Information is Extracted From the Diffraction Pattern

- Initially solidifies 80% Austenite (20% Ferrite)
 - Quickly stabilizes, but is a function of distance above wheel.
- Texture develops at highest measurement point, evolves in first ~0.5 second

Temperature and Stress Are Evident in Lattice Parameter Evolution

Quantitative Microstructural Information is Extracted From the Diffraction Pattern

3.70

- Track the lattice parameter of both phases during and following the weld.
- **Lattice strain can be converted to temperature.**
 - Are there other factors in the lattice parameter, e.g. chemistry or stress?

2.94

Effect of Deposition on Previous Layer Observed

• Lattice parameter measured in-situ during welding used to determine temperature of material below deposition.

Effect of Deposition on Previous Layer Observed

Los Alamos

Evolution of Stress in Previous Layer is Evident

Charpy Specimen Grown From GP-1 to Study PSPP

Measured Mechanical Response of the As-Built Material

- Composition (corresponds to 17-4)
 - Cr (15 17.5 wt-%)
 - Ni (3 5 wt-%)
 - Cu (3 5 wt-%)
 - Mn (max. 1 wt-%)
 - Si (max. 1 wt-%)
 - Mo (max. 0.5 wt-%)
 - Nb (0.15 0.45 wt-%)
 - C (max. 0.07 wt-%)
- Mechanical properties of parts
 - Ultimate tensile strength ~1000MPa
 - Yield strength ~550MPa
 - Young's modulus 170 ± 20 GPa

Match EOS spec sheet (note non-typical flow curve).

Modulus of ~ 190GPa

Yield strength ~ 600MPa

UTS greater than 1.2GPa, looks like ~1.5GPa

EOS Recommends a 1hr/650C "Stress Relief" Heat Treatment of GP-1 Builds

- Chemistry evolves during the heat treatment.
 - Analysis shows that interstitial nitrogen is lost during heat treatement.
- What effect does that process have on the structure/properties?

Heat Treatment Results in Large Difference in Structure and Properties

Loss of interstitial nitrogen increases propensity for martensitic transformation.

Los Alamos

Stress is Independent of Hatching and Fragmentation

C: h = 0.25mm, f = 3mm D: h = 0.25mm, f = 5mm K: h = 0.35mm, f = 4mm

Stress is Strong and Predominantly Longitudinal

Tear During Deposition Has a Strong Effect on Residual Stress

Presence of Notch Results in an Asymmetry in the Stress Field

Conclusions

- Neutron and high energy synchrotron x-ray diffraction and imaging used to monitor microstructure and stress in engineering materials.
- Trying to understand Processing/Structure/Property/Performance relationship to that we can intelligently design and qualify novel materials processing.
 - Additive manufacture is a single example.
- X-ray diffraction has the promise for in-situ studies during deposition, with measurements in the millisecond time frame available today, microsecond or better in the future.
- Neutrons will be limited to post-processing and or operando or residual stress studies of material.
- Combined, they provide a window unto the entire PSPP relationship.

Diffraction Inherently Distinguishes Between Phases

Diffracted Peak Intensity is Directly Related to Pole Density

