Neutron Science In the News – 2014

Because some media sources archive past articles and require a subscription for access, some of the links below might not be active. If a citation listed here is no longer available, please contact the newspaper or your library directly.

July

ORNL, UTGSM Study Compares Structures of Huntington's Disease Protein

Newswise 7/16

Neutron scattering research at the Department of Energy's Oak Ridge National Laboratory has revealed clear structural differences in the normal and pathological forms of a protein involved in Huntington's disease.

Huntington's disease, an incurable neurodegenerative disorder, starts as a genetic mutation that leads to an overabundance of "huntingtin" protein fragments, which form clumps in the brain.

Valerie Berthelier of the University of Tennessee Graduate School of Medicine, who co-led the study published in Biophysical Journal with ORNL's Chris Stanley, said the goal was to establish a baseline understanding of huntingtin's structure in order to eventually determine the true structural basis of Huntington's disease.

Thom Mason on SNS expansion: 'Even in tough times, you need to be doing new things in science'

Knoxville News Sentinel 7/15

This is perceived to be a pretty tough time to get new projects funded in Congress, but Oak Ridge National Laboratory Director Thom Mason said there's still a plan to get started on an expansion of the Spallation Neutron Source sometime in the next two to four years.

The SNS expansion, which would include a second target facility and essentially double the research capabilities, has already received a preliminary blessing from the U.S. Department of Energy. DOE last year approved "Critical Decision-0," which means the agency agreed there is a "mission need" for the project.

Early estimates suggest that the expansion could cost a billion dollars or more, almost as much as the original SNS price tag of $1.4 billion.

SNS achieves a big milestone: full power

Knoxville News Sentinel 7/13

The Spallation Neutron Source is operating like it should, and that is not as simple as it sounds. Last month, eight years after construction was completed and seven years after operations began, the SNS finally achieved the beam power for which it was designed: 1.4 megawatts. Even at lower power levels, the accelerator-based center for materials research set all sorts of records, and scientists from around the globe flocked to Oak Ridge to do experiments with the richest source of neutrons available. It has been a productive journey, but even more is expected with the higher beam power.

Kevin Jones, who heads the Research Accelerators Division at Oak Ridge National Laboratory, noted that the SNS actually reached 1.4 megawatts last September, for about 30 minutes, but the system was too unstable to continue.

For the first time, the accelerator-based pulsed neutron source operated steadily for users at its baseline design power of 1.4 megawatts on June 26.

"Over the past year, we have implemented technical and operational improvements to provide stable operation at 1.4 MW with little operating margin," said Kevin Jones, director of ORNL's Research Accelerators Division. "This achievement is the result of a lot of hard work by the dedicated and talented staff of our division."

A record-breaking month for ORNL's Spallation Neutron Source

PhysOrg 7/3

The Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory broke records for sustained beam power level as well as for integrated energy and target lifetime in the month of June.

For the first time, the accelerator-based pulsed neutron source operated steadily for users at its baseline design power of 1.4 megawatts on June 26.

"Over the past year, we have implemented technical and operational improvements to provide stable operation at 1.4 MW with little operating margin," said Kevin Jones, director of ORNL's Research Accelerators Division. "This achievement is the result of a lot of hard work by the dedicated and talented staff of our division."

June

Czech ambassador tours ORNL

Oak Ridge Today 6/14

Oak Ridge National Laboratory on Friday hosted a visit by Petr Gandalovic, ambassador of The Czech Republic.

The ambassador toured ORNLs High Flux Isotope Reactor and facilities for advanced reactor materials development and testing. He met with ORNL Director Thom Mason and held discussions with lab staff on topics including fluoride salt-cooled high-temperature reactors and the Consortium for Advanced Simulation of Light Water Reactors.

May

Superheavy element 117 confirmed

PhysOrg 5/2

The stage is set for a new, super-heavy element to be added to the periodic table following research published in the latest Physics Review Letters. Led by researchers at Germany's GSI laboratory, the team created atoms of element 117, matching the heaviest atoms ever observed, which are 40 per cent heavier than an atom of lead.

The periodic table of the elements is to get crowded towards its heaviest members. Evidence for the artificial creation of element 117 has recently been obtained at the GSI Helmholtz Centre for Heavy Ion Research, an accelerator laboratory located in Darm-stadt, Germany.

In a powerful example of international collaboration, this new measurement required close coordination between the accelerator and detection capabilities at GSI in Germany and the unique actinide isotope production and separation facilities at Oak Ridge National Laboratory (ORNL) in the U.S. The special berkelium target material, essential for the synthesis of element 117, was produced over an 18-month-long campaign. This required intense neutron irradiation at ORNL's High Flux Isotope Reactor, followed by chemical separation and purification at ORNL's Radiochemical Engineering Development Center.

April

First view of nature-inspired catalyst after ripping hydrogen apart provides insights for better, cheaper fuel cells

PhysOrg 4/23

Like a hungry diner ripping open a dinner roll, a fuel cell catalyst that converts hydrogen into electricity must tear open a hydrogen molecule. Now researchers have captured a view of such a catalyst holding onto the two halves of its hydrogen feast. The view confirms previous hypotheses and provides insight into how to make the catalyst work better for alternative energy uses.

"The combined amount of carbon in vegetation and the atmosphere is only half of the carbon stored in soils," said Melanie Mayes of ORNL's Environmental Sciences Division. "How quickly that carbon moves in and out of soils is one of the big uncertainties in modeling the carbon cycle."

This study is the first time scientists have shown precisely where the hydrogen halves end up in the structure of a molecular catalyst that breaks down hydrogen, the team reported online April 22 in Angewandte Chemie International Edition. The design of this catalyst was inspired by the innards of a natural protein called a hydrogenase enzyme.

"The catalyst shows us what likely happens in the natural hydrogenase system," said Morris Bullock of the Department of Energy's Pacific Northwest National Laboratory. "The catalyst is where the action is, but the natural enzyme has a huge protein surrounding the catalytic site. It would be hard to see what we have seen with our catalyst because of the complexity of the protein."

March

Researchers use neutrons, simulations to examine soil carbon

PhysOrg 3/31

Carbon dioxide in the atmosphere may get the lion's share of attention in climate change discussions, but the biggest repository of carbon is actually underfoot: soils store an estimated 2.5 trillion tons of carbon in the form of organic matter.

"The combined amount of carbon in vegetation and the atmosphere is only half of the carbon stored in soils," said Melanie Mayes of ORNL's Environmental Sciences Division. "How quickly that carbon moves in and out of soils is one of the big uncertainties in modeling the carbon cycle."

With an eye on the big picture, Mayes and her colleagues are taking a closer look at soil carbon by studying nanoscale interactions between organic matter and minerals in soil. The team's novel combination of neutron analysis and supercomputer simulations is providing experimental and theoretical data that challenge long-held assumptions in soil science.

January

Multiphysics Simulations Transmuting Designs for Safer Nuclear Power

Engineering.com 1/7

Like the rest of the US's nuclear research reactors, Oak Ridge National Lab's (ORNL) high flux isotope reactor (HFIR) is moving from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU). As such, the safety of the system must be assessed to incorporate the changes in fuel properties and the subsequently modified fuel plate.

Due to the recent growth in multiphysics, fluid-structure dynamics calculations can be coupled using a fluid-structure interaction (FSI) solver. The FSI solver is the key to the analysis of the HFIR system. Due to a built-in fully coupled FSI solver, and implicit solution capabilities, ORNL chose COMSOL to obtain their stable and precise solution.

Comprehensive phonon "map" offers direction for engineering new thermoelectric devices

R&D Magazine 1/9

If you've ever been stuck in traffic on a hot, sunny afternoon, you might have noticed the rippling effect caused by the release of even hotter exhaust fumes. If so, you've watched opportunity drift away.

Automobiles, power plants, laptops and many other machines produce heat when they operate. Waste heat is an unavoidable energy loss, a tradeoff in order to produce the kind of energy for which the machine is intended. However, this heat could be partly recycled into electrical energy through thermoelectric technology, which converts a temperature difference into an electric voltage.

To understand how to design better thermoelectric materials, researchers are using neutron scattering at the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) at the U.S. Dept. of Energy (DOE)'s Oak Ridge National Laboratory (ORNL) to study how silver antimony telluride is able to effectively prevent heat from propagating through it on the microscopic level. Heat in materials is carried by quantized sound waves, known to scientists as phonons. By mapping the phonons and their interactions with the atomic architecture of silver antimony telluride, researchers in ORNL's Quantum Condensed Matter and Materials Science groups discovered that a complex structure of nanoscale domains improved the thermoelectric properties of this compound.