High Flux Isotope Reactor

Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into the fundamental properties of condensed matter.

The neutron scattering research facilities at HFIR contain a world-class collection of instruments used for fundamental and applied research on the structure and dynamics of matter. HFIR is also used for medical, industrial, and research isotope production; research on severe neutron damage to materials; and neutron activation analysis to examine trace elements in the environment. Additionally, the building houses a gamma irradiation facility that uses spent fuel assemblies and can provide high gamma doses for studies of the effects of radiation on materials.

Recent discoveries made possible by neutrons at HFIR are helping to unravel the secrets of materials and energy. This new knowledge also leads to improvements in every day products like solar cells, hard drives, drugs, and bio-fuels. In addition, HFIRs capabilities help solve crimes and isotopes produced at HFIR are fueling the discovery of new elements and space flight.


These details help lead to advances that can lower the cost, improve the efficiency, and improve the safety of products we use every day like:



HFIR History

HFIR was constructed in the mid-1960s to produce transuranic isotopes—“heavy” elements such as plutonium and curium. Since then its mission has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. Learn More